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Research on reasoning assistants tends to focus on tools that can mechanically verify fully formal-
ized, rigorous proofs [3, 6]. In practice, however, little mathematics is formalized to such a degree.
Instead, DeMillo et al. [7] argue that proof is a social process meant to convince, communicate, and
refine a shared understanding or insight with other human mathematicians [2].

This extended abstract uses the term weak reasoning assistants to unify and survey a scattered
collection of work on tools and techniques that assist mathematicians with that less-than-formal
task of proof without requiring a fully mechanized argument. While even the pencil might be seen
as a very weak reasoning assistant, we focus on the stronger and less well-known middle of the
spectrum: techniques that know something about the underlying mathematics without expecting
to verify entire deductive arguments. Such assistants often result from either adding structure to
an otherwise unstructured tool, or removing structure from a more structured one.

For example, structured proofs [14-16] add more structure to BIEX documents [13] by requiring
deductive steps and justifications be made explicit. Formal proof sketches [29] are dual to this,
where steps are removed from a fully-mechanized proof to create a sketch that is better suited to
human communication. In between, Weak Type Theory [21] enforces the linguistic form of viable
arguments while ignoring logical correctness of their contents.

The Penrose language [31] incorporates semantic knowledge about set theory to greatly simplify
visualization of mathematical claims compared to more unstructured, point-oriented tools like
TikZ [27]. Similar domain-specific visualization tools have shown promise in building interactive
arguments using web technologies [23].

Computer algebra systems like Mathematica [30] and Maple [19] understand semantics of
individual operations, such as polynomial multiplication. The overall deductive argument, however,
is often only expressed in prose referring to the code [26]. Mathematicians generally find such
tools useful to perform tedious symbolic manipulations, search for counterexamples to conjectures,
and explore finite instances of structures to gain or communicate intuition [5].

Property-based testing for Isabelle [4] and Coq [8] automatically searches for counterexamples
to conjectured theorem statements. Aligned with Youssef [32], Greiner-Petter et al. [9] propose a
tool to automatically search for counterexamples to BIEX equations parsed from online repositories.
Failure to find a counterexample can be useful heuristic evidence for the claim. Computer searches
have been used to find both counterexamples to [17] and full proofs of [1, 10] conjectures. Related
tools help refine models of programming languages [12] and system designs [11].

We expect to see weak reasoning assistants continue to bring mechanical assistance to everyday
mathematicians, analogous to lightweight formal methods in traditional software engineering [24].
One mathematician has already proposed a tool for linting KTgX documents [18]. Dually, we suggest
a community effort towards a theorem prover that explicitly prioritizes ease-of-use over small
kernels and soundness-at-all-costs, e.g., by encouraging the use of complicated decision procedures
to establish certain facts, even if the procedure does not produce a proof checkable by the underlying
type checker. To a limited extent this approach is taken by Mizar [20, §3], [28, §7], but we are not
aware of a free software proof system with similar focus. A gradually-mechanizing assistant might
unify unchecked structured proofs with machine-checkable formal proofs, allowing portions of
an argument to be checked modulo others analogous to work in gradual typing [25] and typed
holes [22] for programming languages.
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