
Pathological Cases for a Class of Reachability-Based
Garbage Collectors

MATTHEW SOTOUDEH, Stanford University, USA

Although existing garbage collectors (GCs) perform extremely well on typical programs, there still exist
pathological programs for which modern GCs significantly degrade performance. This observation begs the
question: might there exist a ‘holy grail’ GC algorithm, as yet undiscovered, guaranteeing both constant-length
pause times and that memory is collected promptly upon becoming unreachable? For decades, researchers
have understood that such a GC is not always possible, i.e., some pathological behavior is unavoidable when
the program can make heap cycles and operates near the memory limit, regardless of the GC algorithm used.
However, this understanding has until now been only informal, lacking a rigorous formal proof.

This paper complements that informal understanding with a rigorous proof, showing with mathematical
certainty that every GC algorithm that can implement a realistic mutator-observer interface has some patholog-
ical program that forces it to either introduce a long GC pause into program execution or reject an allocation
even though there is available space. Hence, language designers must either accept these pathological scenarios
and design heuristic approaches that minimize their impact (e.g., generational collection), or restrict programs
and environments to a strict subset of the behaviors allowed by our mutator-observer–style interface (e.g., by
enforcing a type system that disallows cycles or overprovisioning memory).

We do not expect this paper to have any effect on garbage collection practice. Instead, it provides the first
mathematically rigorous answers to these interesting questions about the limits of garbage collection. We do
so via rigorous reductions between GC and the dynamic graph connectivity problem in complexity theory, so
future algorithms and lower bounds from either community transfer to the other via our reductions.

We end by describing how to adapt techniques from the graph data structures community to build a
garbage collector making worst-case guarantees that improve performance on our motivating, pathologically
memory-constrained scenarios, but in practice find too much overhead to recommend for typical use.
CCS Concepts: • Software and its engineering→ Garbage collection.
Additional Key Words and Phrases: Garbage Collection, Programming Languages, Complexity
ACM Reference Format:

Matthew Sotoudeh. 2025. Pathological Cases for a Class of Reachability-Based Garbage Collectors. Proc. ACM
Program. Lang. 9, OOPSLA1, Article 96 (April 2025), 28 pages. https://doi.org/10.1145/3720430

1 Introduction
Managing limited memory resources is a fundamental problem in programming language design.
Garbage collection (GC) is a user-friendly approach where the language runtime automatically
deallocates memory regions once they are no longer reachable from the local and global vari-
ables [Jones et al. 2011]. Concerns about predictability and pause times have led many low-level
languages to adopt manual memory management, where the programmer explicitly tells the run-
time when to release resources [Wolfe 2017]. Other languages use type systems that allow the
compiler to predict statically where to release memory resources at the cost of restricting program
expressiveness [Coblenz et al. 2022]. This paper explains in a formal way why these tradeoffs are
necessary, by proving hard limits on the asymptotic worst-case performance of a wide class of GCs.
Author’s Contact Information: Matthew Sotoudeh, Stanford University, Stanford, USA, sotoudeh@stanford.edu.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART96
https://doi.org/10.1145/3720430

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0003-2060-1009
https://doi.org/10.1145/3720430
https://orcid.org/0000-0003-2060-1009
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3720430
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nd/4.0/


96:2 Matthew Sotoudeh

We first give a formal model characterizing precisely the class of garbage collectors our results
apply to. In particular, we address only those GC algorithms that can be used to implement a
mutator-observer interface where the GC algorithm reads a stream of pointer updates from the
program and then must add regions to a free list once they become unreachable. In such a setting,
one key issue is how long it takes for the GC to add a region to the free list after it becomes
unreachable: we call this the delay. Many real-time settings, e.g., medical devices and avionics, have
critical timing constraints. In those settings, it can be catastrophic for the program to be forced to
wait for a significant period of time on the GC to finish collecting a region before a new allocation
can be made.
Until a memory limit is reached, state-of-the-art real-time garbage collection algorithms can

make the following guarantees (see, e.g., Section 4.2 of Bacon et al. [2003]):

(1) Constant Pause Times: The GC only slows each program instruction down by a constant
amount.

(2) Linear Collection Delay: Suppose at some program point there are 𝑛 reachable memory
regions, and then a program operation makes one of those regions unreachable. Then, the
GC guarantees that region will be collected within 𝑂 (𝑛) program operations.

The fundamental question of this paper is whether the 𝑂 (𝑛) collection delay can be

reduced without increasing pause times. For naïve tracing GC algorithms, which are designed
around a traversal of the graph, the answer is intuitively no: no regions can be safely collected until
the entire traversal, which may have to visit𝑂 (𝑛) nodes, completes. While the story is complicated
by the use of incremental tracing, among GC researchers, there is an informal understanding that
the 𝑂 (𝑛) collection delay is unavoidable in some pathological scenarios, where the program may
make heap cycles and operates close to the memory limit. However, until this paper, there was no
formal proof ruling out the existence of fundamentally more-clever algorithms yet to be discovered
that improve collection delay without worsening pause times.

1.1 Problems with Delay
Before explaining the theoretical results of our paper, it is helpful to motivate our study by describing
one application-level issue (GC thrashing) caused by the existence of collection delay. This issue
is well-known among both researchers and practitioners [Bloch 2017; Christian and Marks 2021;
Nguyen et al. 2016; Venners 1998]; we repeat it here merely to keep the paper self-contained. A more
in-depth explanation is provided in Section 2, and a separate issue compounding on the already-
problematic language feature of finalization is described for interested readers in Appendix J.
Section 2.1 describes a program operating very close to the memory limit. It first allocates a

large amount of memory that stays reachable through the entire program execution, pinning its
logical memory usage near the limit. It then repeatedly makes a single region unreachable before
requesting a new allocation in a loop. Because of collection delay, modern GCs do not guarantee
that the region just made unreachable can be actually collected in time to be reused for the new
allocation. Hence, to stay under the memory limit, the GC is forced to complete a full collection
cycle on each iteration, introducing linear-length pause times that would be catastrophic for critical
real-time applications. In our example, the GC ends up thrashing and slows down end-to-end
execution time by 70× compared to a manually managed version1.

1In practice, real-time systems based on collectors like that of Bacon et al. [2003] work around this issue by overprovisioning
memory so the limit is never reached. Overprovisioning incurs additional costs and is difficult to apply in settings with
dynamically changing memory constraints, e.g., with multiple interacting processes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:3

1.2 Impossibility Result
It is tempting to hope that the issues described above and in Section 2 could be fixed once-and-for-all
with a more complicated collector. The core result of this paper is an impossibility theorem

implying it is fundamentally impossible to avoid such issues (Corollary 4.5). For every
garbage collector (defined formally in Section 3.1) there is a program where the GC must either
(i) introduce a superlogarithmic pause during some program operation, or (ii) delay collecting a
region for a superlogarithmic number of program operations. If a long pause can be introduced, the
collector is insufficient for use in real-time settings (e.g., medical devices) where timing is critical.
On the other hand, if collection delay is introduced, the collector is insufficient for applications that
either (i) operate close to the memory limit and so must be able to reuse memory regions quickly;
or (ii) rely on prompt finalization for actions like unlocking.
Notably, GC researchers have understood this fact for decades, but only at an informal level.

To the best of our knowledge, ours is the first rigorous impossibility result concerning garbage
collection. The result follows from a novel connection to the well-studied problem of dynamic

connectivity in the graph algorithms community. Unfortunately, that connection goes both ways:
although we expect the lower bound can be improved (e.g., from superlogarithmic to linear), this is
exactly as difficult as solving a longstanding open problem in graph algorithms.

1.3 Limitations of Results
It is crucial to note a number of limitations to our results. First, they only imply lower bounds for a
GC algorithm insofar as the GC algorithm can be used to implement our mutator-observer GCDS
interface in Section 3.1. Hence, they say nothing directly about, e.g., moving collectors. However, it
is sometimes possible to modify such GC algorithms to fit our GCDS interface without significant
effect on asymptotic time. For example, Baker [1992] adapts the moving collector in Jr. [1978] to a
nonmoving version that can be used to implement our GCDS interface. In those cases, our bounds
apply only to the modified algorithm, and additional analysis must be done to understand to what
extent (if at all) the results imply anything about the unmodified algorithm.

Second, our results address only the problem of collecting regions no longer reachable by pointers
from a root set. We say nothing about GC approaches using different approximations to liveness.

Finally, they implymerely that there exists at least one pathological sequence of pointer operations
where the GC algorithm performs poorly, but they say nothing about the performance of the
algorithm in typical cases. In particular, the pathological behavior we prove exists will involve
operating close to the memory limit and the existence of potential heap cycles. Hence, our results
are sidestepped when these pathological cases are ruled out by restrictive type systems or resource
overprovisioning, and they say nothing about what can be achieved for the typical case by well-
designed heuristics like generational collection.

1.4 Implications of Results
Our motivation is theoretical, to understand with mathematical certainty the limits of GC.
After nearly 60 years of research [Gelernter et al. 1960; Newell and Shaw 1957], there still exist
pathological programs where even the best GCs significantly degrade performance (Section 2). This
paper provides a precise, formal explanation for the extent to which such pathological cases are
unavoidable, even by GC algorithms not yet discovered.
For GC researchers, our results provide precise and formal confirmation of the informal un-

derstanding that searching for GC algorithms that avoid all such pathological cases in the worst
case is futile, hence motivating heuristics like generational collection. They also provide a helpful

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:4 Matthew Sotoudeh

sanity check on claims; in Section 5.3 we describe how one of our lower bounds would have helped
discover a known error in the cyclic reference counting literature.
Our analysis has no direct implication for GC users, beyond slightly clarifying the worst-

case tradeoffs that will come with the use of automated GC. In the very long term, we are optimistic
that the algorithm described in Section 7 might spur research ideas that lead to better garbage
collectors, but our evaluation of the algorithm as presented in this paper indicates that it is only
beneficial in very extreme pathological scenarios, hence not recommended for typical use.

1.5 Contributions and Outline
The major contributions of this paper are as follows:

(1) Definition of the Garbage Collection Data Structure which formalizes the mutator–observer
interface of most nonmoving garbage collection schemes (Section 3).

(2) A novel lower bound showing fundamental tradeoffs between worst-case pause time and
collection delay (Section 4). It implies that every GC fitting the GCDS interface is susceptible
to pathological cases similar to the ones demonstrated in Section 2.1.

(3) A second lower bound showing that reference counting cannot be extended to handle cycles
without either significantly increasing the worst-case pause times or introducing significant
collection delay, even on programs making only acyclic heaps (Section 5).

(4) A GC guaranteeing 𝑂 (1) collection delay in all settings and logarithmic pause times while
the heap is acyclic (Section 7). While it introduces too much overhead to suggest as a general-
purpose GC, it addresses interesting and long-standing theoretical questions regarding the
extent to which reference counting can be extended to handle cycles.

Section 6 ties the technical results back to the programming languages context, Section 8 discusses
limitations and future work, Section 9 discusses related work, and Section 10 concludes the paper.

2 Motivating Example: What’s Wrong with Delay?
We motivate the question of whether garbage collectors with constant pause times and collection
delay exist using a well-known GC issue, thrashing [Nguyen et al. 2016]. Appendix A has full code
and explains how to trigger similar behavior in GCs using generations, reference counting, etc. In
addition to the thrashing problem, collection delay is known to cause deadlocks when combined
with programs making overzealous use of finalizers. However, the use of finalizers is generally
known to be bad practice, so we relegate an example of this to the appendix (Appendix J).

2.1 GC Thrashing and Linear Pause Times in the Memory-Constrained Setting
Real-time applications critically require constant-length worst-case pause times. Existing garbage
collection schemes can guarantee constant-length pause times. But because they do not guarantee
immediate collection, when a program operates close to the memory limit—common in, e.g.,
embedded settings where real-time guarantees are important—existing GCs can be forced to choose
between breaking this guarantee and waiting significantly longer to complete a collection cycle
before enough free memory can be found to continue execution, or refusing an allocation even
though unreachable memory does exist.
Demonstrating this, consider the Lua program excerpted in Figure 1. The calls to fetch_item

and process_item both allocate large memory buffers. The program attempts to limit overall
memory usage via a small wrapper (not shown in the excerpt) that records the total number of
uncollected allocations and refuses to allocate more if the limit is reached.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:5

-- (excerpted implementations away of some functions, globals)
-- stage 1: fetch items into an array
-- each item has a large memory buffer associated with it
local items = {}
for i=1,N_ITEMS do items[i] = fetch_item() end
-- at this point, memory is near the limit
-- stage 2: compute a summary statistic
local summary = 0
-- process_item makes large, but temporary, allocations
-- frequent GC pauses needed to collect old temporary allocations
for i=1,N_ITEMS do summary = summary + process_item(items[i]) end

Fig. 1. Excerpt from the example program showing long pause times in the memory-constrained setting.
Both fetch_item and process_item allocate large memory blobs using a wrapper that enforces a strict limit
on the total (logical) allocation size. The limit is almost reached by the end of stage 1, and only the blobs
allocated in stage 2 are temporary, so nearly every iteration of the loop in stage 2 needs to make a full GC
pass to collect old temporary blobs before allocating a new one for that iteration. This program is sufficient to
trigger GC thrashing in Lua. Variants of this program trigger similar linear-length pause times in collectors
that use generational collection and reference counting.

0 0.2 0.4 0.6 0.80

0.5

1

1.5
·106

time (s)

nu
m
be
ro

fb
lo
bs

(m
em

or
y
us
ag
e)

(a) No limit

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1 ·10
6

time (s)

(b) Manual memory

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1 ·10
6

time (s)

(c) GC

2 2.2 2.4 2.6 2.8 3

1

1

1

1

1

1

·106

time (s)

(d) GC zoomed in

Fig. 2. With and without memory pressure. The first stage is shown in blue, the second in red.

The application’s first stage fills an array of objects. Each object contains a reference to a large
memory blob, e.g., the contents of a file. These blobs will stay permanently reachable throughout
the program execution. After the first stage we have nearly reached our memory limit.

The second stage computes a summary, e.g., the most frequent token in the file, from each item
in the array. Computing the summary requires allocating another large, but temporary, memory
buffer for each item. Hence, the memory limit gets reached quickly after the first few iterations of
the second stage. Seeing this, the allocator must wait for the GC to finish collecting old temporary
buffers from previous iterations before it can allocate space for the latest iteration of the second
loop. This causes repeated waiting on the GC, often referred to as GC thrashing.

Logical memory usage is graphed against time in Figure 2. Without a memory limit (Figure 2a)
the GC is never forced to run, so the application finishes quickly with only a small number of
relatively short pauses. When a limit is enforced but the programmer manually marks unreachable
memory for collection (Figure 2b), the limit is never reached so performance is similarly good.
However, when the memory limit is enforced and the GC is relied on to automatically reclaim

unreachable regions (Figure 2c), we see a 70× slowdown. Nearly all of this time is spent in the
second stage thrashing within the GC. Figure 2d shows a zoomed-in view of one second’s worth
of the second stage execution. The majority of time is spent with memory usage pinned at the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:6 Matthew Sotoudeh

maximum while the GC is running to free up new space for a new allocation. The actual application
work only happens within the near instantaneous dips below that limit.

Note that all of the memory allocated during the first stage is still reachable, so the GC cannot
collect more than a small amount at a time. Specifically, it collects temporary regions from calls
to process_item since the last time it was run. Also note that the time taken by the GC is not
time needed to actually free the memory, as the manual memory management performance is
significantly better. Instead, the time is spent locating what can be freed: ensuring even a single
region can be freed requires searching the entire heap to check that nothing else points to it.
This pathological behavior shows one downside of collection delay: when more memory is

needed, there is no guarantee that the GC will be able to find it quickly even if it exists. Our
impossibility result proves that this sort of scenario is impossible to avoid.

3 Preliminaries and the Garbage Collection Data Structure
To rigorously investigate claims about what is or is not possible for future garbage collectors, we
must formalize what we mean by a garbage collector. This section formalizes the garbage collection
problem as the garbage collection data structure (GCDS) and discusses nuances in defining the
asymptotic running time of GCDS operations.

3.1 Garbage Collection Data Structure (GCDS)
We will model runtime pointer information as a directed multigraph, i.e., a set𝑉 of vertices (nodes)
and a map 𝐸 : 𝑉 ×𝑉 → N≥0 indicating the number of edges from one node to another. Vertices
represent memory regions and the edges represent pointers from one region to another (we will
use “regions” and “nodes” interchangeably throughout). Because we are proving lower bounds, we
are justified in ignoring the size of memory regions; the worst-case sequence of operations we will
prove exists can be thought of as making equal-sized allocations.

A GC heap is a directed multigraph along with a distinguished vertex root ∈ 𝑉 with no incoming
edges. The root vertex is meant to represent the local and global variables, i.e., it has outgoing
edges to any regions that local and global variables have direct pointers to.

With this in mind, we can define a set of procedures that describe the desired interface between
the programming language and the garbage collector. The interface was designed to capture the
standard interface of nonmoving GCs for imperative code, i.e., where the GC sees the program as a
mutator modifying pointers in a heap.

Definition 3.1. A garbage collection data structure (GCDS) is a data structure that (i) represents a
GC heap, i.e., a directed multigraph with distinguished vertex root; (ii) stores a list GCFreeList of
vertices not reachable from root; and (iii) supports the following procedures:

• GCAllocate() allocates a new vertex 𝑎 and adds edge root→ 𝑎.
• GCInsert(𝑎 → 𝑏) adds edge 𝑎 → 𝑏.
• GCDelete(𝑎 → 𝑏) removes edge 𝑎 → 𝑏.
• GCStep() requests the GCDS perform additional collection work (analogous to, e.g.,
collectgarbage("step") in Lua).

The GCDS may only add nodes that are unreachable from root to GCFreeList. While the user of
the data structure may remove nodes from GCFreeList, the GCDS itself must never remove a node
from GCFreeList (only add). The user of the data structure promises no edge ending in root is
inserted and no query involves a node no longer reachable from root. We say each call made to
one of these GCDS procedures is a GCDS operation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:7

A GCDS can be used to implement GC for an imperative language. When the program overwrites
a pointer in region 𝑠 that was pointing to region 𝑑1 to now point to region 𝑑2, the GCDS opera-
tions GCInsert(𝑠 → 𝑑2) and GCDelete(𝑠 → 𝑑1) are performed. GCStep() can be called after every
program operation to perform some incremental GC work. When memory pressure is encoun-
tered, GCFreeList can be checked for allocation regions that can be reused by the application. If
GCFreeList is empty and the application requires more memory, GCStep() can be called to request
the collector spend more time searching for regions that may be safely freed. The extent to which
an efficient GC implies the existence of an efficient GCDS is discussed in Appendix G.
Note that the collector does not need to ensure that all unreachable nodes are placed on

GCFreeList immediately upon becoming unreachable, or even after a call to GCStep(). This allows
for modelling concurrent tracing collectors that perform only a small portion of a sweep after each
program operation. The frequency at which GCFreeList is updated to reflect newly unreachable
nodes is captured by the delay metric below (Definition 3.2).

3.2 Defining Asymptotic Complexity of Garbage Collection
We consider two primary measures of GCDS efficiency. These definitions are somewhat informal
for space reasons; more formal definitions and a discussion of alternative definitions that also work
is given in Appendix H. We will assume here the GCDS is deterministic.

3.2.1 Worst-Case Delay. The focus of this paper is on worst-case delay, i.e., the number of GC
operations that may need to be executed before an unreachable node is added to GCFreeList.

Definition 3.2. The worst-case delay 𝑑 (𝑛) of a GCDS is the pointwise minimal function such that,
in any sequence of GCDS operations involving at most 𝑛 nodes (i.e., making at most 𝑛 calls to
GCAllocate), if some operation makes a node 𝑢 unreachable, 𝑢 is added to GCFreeList after at
most 𝑑 (𝑛) more GCDS operations (including the operation that makes it unreachable).

3.2.2 Worst-Case Pause Times. The other quantity we are interested in is the worst-case pause
time, i.e., the longest amount of time that any single GCDS operation might take. This corresponds
directly to the extra pause time between program operations introduced by the GC. In a real-time
application, guaranteeing 𝑂 (1) pause times can be critical.

Definition 3.3. The worst-case pause time 𝑡 (𝑛) of a GCDS is the pointwise minimal function such
that, in any sequence of GCDS operations involving at most 𝑛 nodes, each GCDS operation in the
sequence takes time at most 𝑡 (𝑛).
3.2.3 Fine-Grained Measures: Noncollecting and Acyclic Pause Times. We will eventually prove that,
for every GCDS, there is a sequence of operations that forces it to introduce either a long pause time
or a long collection delay. The reader may be concerned that the sequence of operations is somehow
‘unfair,’ e.g., that long pause times are only encountered because a large fraction of the heap needs
to be collected quickly, or that densely connected structures are used, or that cyclic structures are
used. To address these concerns we will need to introduce the all-reachable, acyclic all-reachable,
and sparse acyclic all-reachable variants of the worst-case pause time definition from earlier. Each
one captures the worst-case pause times introduced for a subset of possible program executions.
Hence, lower bounds on these are stronger than lower bounds on 𝑡 (𝑛), as they guarantee the
existence of a hard sequence of operations involving progressively simpler classes of heaps.

Definition 3.4. The all-reachableworst-case pause time 𝑡AR (𝑛) of a GCDS is the pointwise minimal
function such that, in any sequence of GCDS operations involving at most 𝑛 nodes and never

making any node unreachable, each operation in the sequence takes time at most 𝑡AR (𝑛).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:8 Matthew Sotoudeh

Definition 3.5. The acyclic all-reachableworst-case pause time 𝑡A,AR (𝑛) of a GCDS is the pointwise
minimal function such that, in any sequence of GCDS operations involving at most 𝑛 nodes, never
making any node unreachable, and never forming a cycle in the heap, each operation in the
sequence takes time at most 𝑡A,AR (𝑛).

Definition 3.6. The sparse acyclic all-reachable worst-case pause time 𝑡S,A,AR (𝑛) of a GCDS is the
pointwise minimal function such that, in any sequence of GCDS operations involving at most 𝑛
nodes, never making any node unreachable, never forming a cycle in the heap, and never

having more than 𝑂 (1) edges leaving any node, each operation in the sequence takes time at
most 𝑡S,A,AR (𝑛).
It is important to clearly note here that lower bounds on these restricted versions of 𝑡 (𝑛) are

stronger than lower bounding 𝑡 (𝑛) itself.
Lemma 3.7. Every GCDS has 𝑡S,A,AR (𝑛) ≤ 𝑡A,AR (𝑛) ≤ 𝑡AR (𝑛) ≤ 𝑡 (𝑛).
Proof. Every function in the sequence is defined as the max time over progressively larger

subsets of possible executions. The claim follows because the max over a subset is smaller than
that over the full set, i.e., when 𝑆 ⊆ 𝑇 we know max(𝑆) ≤ max(𝑇 ). □

3.3 Examples of GCDS Implementations
Our theoretical results (Section 4 and Section 5) apply to any GC approach that can be adapted
to implement the GCDS interface (Definition 3.1). It is therefore important to get a sense for how
different GC approaches can be adapted to implement the GCDS interface. This section describes
how to use both reference counting and mark-and-sweep to implement the GCDS interface.
In the below pseudocode, we make use of multisets to store the edges in the heap graph. We

assume multisets are implemented such that the following can be done in 𝑂 (1) time:
(1) They can be converted into an iterator that only visits each element once; we call this

operation 𝑠 .no_multi().
(2) The number of copies of an object in the multiset can be computed using 𝑠 .count(𝑜).

3.3.1 Eager Reference Counting as a GCDS. Figure 3 shows an implementation of the GCDS
interface using the eager reference counting technique. The GCDS’s internal data includes a
dictionary mapping each node ID to a reference count, a multiset of outgoing edges for each node
ID, and a running ID used to allocate new node IDs.

The root node is associated with ID zero. Allocation involves assigning a new ID and returning
it for use to the user. Inserting an edge 𝑎 → 𝑏 updates the reference count of 𝑏 and outgoing edge
set of 𝑎. Deleting an edge 𝑎 → 𝑏 reduces the reference count of 𝑏; if it drops to zero, 𝑏 is placed on
the free list and all of its outgoing edges are similarly deleted in a recursive manner.
What is important in this context is not that the GCDS perfectly match the implementation of

a real reference counting system (indeed, this would require specializing to a specific language
implementation and runtime, which we are trying to abstract away from), but rather ensuring that
the performance characteristics we defined earlier (delay and pause time) are not harmed in the
translation from real GC approach to GCDS implementation.

Notably, this GCDS does not attempt to store reference counts within the allocated region itself;
in fact, it has no notion of "allocated memory" at all because it operates on a graph abstraction
of the heap. Intuitively, one can think of the GCDS as operating in a separate address space from
the program, seeing only pointer operations as sequences of GCDS operations on handles that are
returned by GCAllocate. Hence, it must store its own metadata and shadow copy of the graph,
e.g., using the ‘ref_counts’ and ‘outgoing’ variables in Figure 3. However, it is important to note

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:9

Algorithm 1: GCInit()
1 ref_counts← ∅;
2 outgoing← ∅;
3 root← id← 0;

Algorithm 2: GCStep()
1 no-op;

Algorithm 3: GCAllocate()
1 id← id + 1;
2 return id;

Algorithm 4: GCInsert(𝑎 → 𝑏)
1 ref_counts[𝑏] ← ref_counts[𝑏] + 1;
2 outgoing[𝑎] ← outgoing[𝑎] ∪ {𝑏};

Algorithm 5: GCDelete(𝑎 → 𝑏)
1 outgoing[𝑎] ← outgoing[𝑎] − {𝑏};
2 ref_counts[𝑏] ← ref_counts[𝑏] − 1;
3 if ref_counts[𝑏] = 0 then
4 worklist← {𝑏};
5 while worklist ≠ ∅ do
6 node← worklist.pop();
7 GCFreeList← GCFreeList ∪ {node};
8 for 𝑐 ∈ outgoing[node] .no_multi() do
9 ref_counts[𝑐] ← ref_counts[𝑐] − outgoing[node] .count(𝑐);

10 if ref_counts[𝑐] = 0 then worklist← worklist ∪ {𝑐};

Fig. 3. Eager reference counting as an implementation of the GCDS interface. ID 0 represents the root node
(stack/local/global variables) while all other memory regions get a unique ID upon allocation. ref_counts is
a map from IDs to counts that could be implemented using a hashmap.

that searching in these variables can be done in 𝑂 (1) expected time using a hashmap to store
the refcounts and outgoing edges, or in 𝑂 (1) worst-case time using a direct addressing table at
the expense of added memory overhead. In general, our impossibility results in this paper apply
regardless of the space usage of the GCDS itself, hence it is okay if when translating a GC algorithm
to implement the GCDS interface more space (even asymptotically more space) is used, as long as
the delay and pause times are not affected; all of our results will still apply.

Worst-Case Delay: This reference counting GCDS has no well-defined worst-case delay, because
if a sequence of GCDS operations forms a cycle, e.g., root→ 𝑎 → 𝑏 → 𝑐 → 𝑎, and then deletes
root → 𝑎, the node 𝑎 will never be added to the free list, no matter how many additional GC
operations are performed. We informally write 𝑑 (𝑛) = ∞ for this situation.
Worst-Case Pause Times: In some cases, a single edge removal could make every node in

the heap unreachable at once resulting in GCDelete having to iterate over every edge in the
heap, making 𝑡 (𝑛) = 𝑂 (𝑛2). However, the worst-case all-reachable pause time (Definition 3.4) is
significantly better: if all nodes are still reachable from root, then the reference count could not
have dropped to zero, and hence the if condition in GCDelete is never taken. All the remaining
operations take 𝑂 (1) time, hence 𝑡AR (𝑛) = 𝑂 (1). By Lemma 3.7 this also implies 𝑡A,AR (𝑛) = 𝑂 (1)
and 𝑡S,A,AR (𝑛) = 𝑂 (1).

3.3.2 Mark-and-Sweep as a GCDS. Figure 4 shows how the mark-and-sweep technique can be used
to implement the GCDS interface. Like the reference counting GCDS, we keep track of a shadow
copy of the heap graph. But instead of checking reference counts to determine when something

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:10 Matthew Sotoudeh

Algorithm 6: GCInit()
1 outgoing← ∅;
2 root← id← 0;
3 all← ∅

Algorithm 7: GCInsert(𝑎 → 𝑏)
1 outgoing[𝑎] ← outgoing[𝑎] ∪ {𝑏};

Algorithm 8: GCAllocate()
1 id← id + 1;
2 all← all ∪ {id};
3 return 𝑖𝑑 ;

Algorithm 9: GCDelete(𝑎 → 𝑏)
1 outgoing[𝑎] ← outgoing[𝑎] − {𝑏};
2 GCStep();

Algorithm 10: GCStep()
1 worklist← {root};
2 marked← ∅;
3 while worklist ≠ ∅ do
4 node← worklist.pop();
5 if node ∈ marked then Continue;
6 marked← marked ∪ {node};
7 worklist← worklist ∪ outgoing[node] .no_multi();
8 GCFreeList← GCFreeList ∪ (all −marked);
9 all← all − (all −marked);

Fig. 4. Nonincremental mark-and-sweep as an implementation of the GCDS interface. ID 0 represents the
root node (stack/local/global variables) while all other memory regions get a unique ID upon allocation.
outgoing maps each IDs to a multiset of IDs, while worklist is a non-multi set.

becomes unreachable, we perform a search through the graph starting at root to determine any
newly unreachable nodes.
Worst-Case Delay: This GCDS has worst-case delay 𝑑 (𝑛) = 1, because it guarantees that all

unreachable regions are added to the free list immediately once they become unreachable.
Worst-Case Pause Times: This GCDS has worst-case pause time 𝑡 (𝑛) = 𝑂 (𝑛2) because the

marking phase in GCDelete sometimes has to visit every node in the graph, and for each of
those nodes must add all of its outgoing nodes to the worklist. This analysis is unaffected by the
connectedness or cyclicity of the heap graph, hence we have 𝑡AR (𝑛) = 𝑂 (𝑛2) and 𝑡A,AR (𝑛) = 𝑂 (𝑛2).
But if the heap graph is sparse, then the number of edges is limited and we get 𝑡S,A,AR (𝑛) = 𝑂 (𝑛).

3.4 Cell Probe Model, Random Access Machines, and Reductions
The existing lower bounds we use [Larsen and Yu 2023; Pǎtraşcu and Demaine 2004] are in the cell
probe model of Yao [1978]. Data structures in the cell probe model are split into a single persistent
store and a set of procedures. The persistent store is a large table of binary words, analogous to the
random access memories used in modern computers. The procedures are programs that can read
and write words from the persistent store.
Lower bounds in the cell probe model bound only the number of reads from and writes to the

persistent store. No assumption at all is made about the machine model that the procedures run
on, except that accessing a memory cell takes Ω(1) time and that writes made to the store are a
deterministic function of reads from the store. In fact, lower bounds proved in this way apply even
to unrealistic machine models, e.g., Turing machines with an oracle for the halting problem.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:11

One nuance in the cell probe model is the need for a word size for the table. Usually, the
data structure is given an upper bound 𝑛max on the number of objects the data structure might
be asked to represent, e.g., nodes and edges in a graph or items in a set. On a realistic modern
machine, 𝑛max would be approximately 264. The persistent store is allowed to have a word size
logarithmic in this upper bound, i.e.,𝑤 = 𝑂 (log𝑛max).

4 Main Lower Bound
Our goal in this section is to prove that every GCDS has 𝑡 (𝑛)𝑑 (𝑛) = Ω̃(log3/2 𝑛). In particular, this
means any GCDS guaranteeing 𝑂 (1) delay must have superlogarithmic pause times. In fact, we
will prove the stronger result that 𝑡AR (𝑛)𝑑 (𝑛) = Ω̃(log3/2 𝑛), i.e., the superlogarithmic pause can be
triggered by a sequence of GCDS operations where nothing ever becomes unreachable. This is, at
first glance, counterintuitive because if it knew ahead of time that nothing becomes unreachable,
the GCDS would not need to do any work. However, the GCDS is not told this ahead of time, and
we still require that it guarantee delay 𝑑 (𝑛) if something were to become unreachable. Essentially,
the GCDS must still prove to itself that nothing has become unreachable.

4.1 Dynamic Graph Connectivity
Our main lower bound follows via reduction from dynamic graph connectivity, defined below.

Definition 4.1. A dynamic connectivity data structure (DCDS) stores a graph (𝑉 , 𝐸) on a fixed
number 𝑛max = 𝑛 of vertices. It supports the following operations:
(1) DCInsert(𝑎 → 𝑏) adds edge 𝑎 → 𝑏.
(2) DCDelete(𝑎 → 𝑏) removes edge 𝑎 → 𝑏.
(3) DCConnected(𝑎 →+ 𝑏) returns connected if and only if there is a path from 𝑎 to 𝑏.

Larsen and Yu [2023] prove that this general form of dynamic connectivity requires Ω̃(log3/2 𝑛)
time in the cell probe model (Section 3.4) [Yao 1978].

Theorem 4.2. (Larsen and Yu [2023]) Every DCDS has worst-case Ω̃(log3/2 𝑛) per-operation time.

4.2 Clocked Machines and Checkpoint-Restore
Our reduction involves two special operations: checkpoint-restore and timeouts.

A ‘restore’ operation causes the state of the data structure’s persistent store to be restored to that
of the last ‘checkpoint’ operation. Finitely many checkpoint-restore operations can be implemented
with constant overhead on realistic machines by logging memory writes after each checkpoint and
undoing them when restoring.
Timeouts stop the operation of a subroutine after a fixed number of instructions are executed.

They can be implemented with 𝑂 (1) overhead by instrumenting the subroutine instructions to
continuously increment a clock counter and exit the subroutine if the counter passes the timeout.

4.3 Reduction from Larsen and Yu [2023], DCDS
We now show that an efficient GCDS could be used to construct an efficient DCDS. The existence
of such a reduction means that the known lower bounds on the DCDS problem apply to GCDS as
well. The reduction is described by Algorithms 11–14.

High-Level Operation of the Reduction. At a high level, we implement the DCDS operations
DCInsert and DCDelete by mirroring their edge manipulations in the GCDS. The GCDS also sees
an additional node, 𝑋 , that has an incoming edge from root and an outgoing edge to every other
node in the graph. To check for the existence of a path between two nodes, we connect root to the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:12 Matthew Sotoudeh

Algorithm 11: DCInsert(𝑣𝑖 → 𝑣 𝑗 )
1 𝑣𝑖 , 𝑣 𝑗 ← DCCreate(𝑖, 𝑗);
2 GCInsert(𝑣𝑖 → 𝑣 𝑗 );

Algorithm 12: DCDelete(𝑣𝑖 → 𝑣 𝑗 )
1 𝑣𝑖 , 𝑣 𝑗 ← DCCreate(𝑖, 𝑗);
2 GCDelete(𝑣𝑖 → 𝑣 𝑗 );

Algorithm 13: DCCreate(𝑖1, 𝑖2, . . .)
1 if 𝑋 = ⊥ then 𝑋 ← GCAllocate() ;
2 for 𝑖𝑘 ∈ 𝑖1, 𝑖2, . . . do
3 if 𝑖𝑘 ∉ 𝑁 then

4 𝑁 (𝑖𝑘 ) ← GCAllocate();
5 GCInsert(𝑋 → 𝑁 (𝑖𝑘 ));
6 GCDelete(root→ 𝑁 (𝑖𝑘 ));
7 return 𝑁 (𝑖1), 𝑁 (𝑖2), . . .;

Algorithm 14: DCConnected(𝑣𝑖 →+ 𝑣 𝑗 )
1 Checkpoint;
2 𝑣𝑖 , 𝑣 𝑗 ← DCCreate(𝑖, 𝑗);
3 GCInsert(root→ 𝑣𝑖 , 𝑣 𝑗 → 𝑋 );
/* The GCDS guarantees that operations take ≤ 𝑡AR (𝑛) time when nothing new

becomes unreachable, so if it runs longer than that we know something
must have become unreachable. */

4 if GCDelete(root→ 𝑋 ) runs for more than 𝑡AR (𝑛) instructions or GCFreeList is not empty

then

5 Restore;
6 return Disconnected;
/* The GCDS guarantees that any unreachable region is collected within 𝑑 (𝑛)

operations, so this loop simulates 𝑑 (𝑛) program operations to guarantee
that unreachable regions will be detected if any exist. */

7 foreach 𝑖 ∈ 1, 2, . . . , 𝑑 (𝑛) do
8 if GCStep() runs for more than 𝑡AR (𝑛) instructions or GCFreeList is not empty then

9 Restore;
10 return Disconnected;
11 Restore;
12 return Connected;

Fig. 5. Reduction from DCDS to GCDS. The DCCreate helper method is needed to lazily create nodes in the
GCDS because the DCDS comes preallocated with 𝑛 nodes while the GCDS begins with none.

source, connect the destination to 𝑋 , and then disconnect 𝑋 from the root. There was a path from
source to destination if and only if all nodes remain reachable.

All-Reachable Time Assumptions. Recall our goal is to show the stronger fact that 𝑡AR (𝑛)𝑑 (𝑛) =
Ω̃(log3/2 𝑛), so our reduction we may assume only that the all-reachable worst-case pause times
are guaranteed to be low. The GCDS is allowed to take an arbitrarily long time—or even refuse to
terminate—if there are unreachable nodes. How should we use the GCDS operations, then, if they
might cause things to become disconnected? An elegant solution is to timeout the execution of
the GCDS (Section 4.2): if it takes more than 𝑡AR (𝑛) steps, it must indicate there are unreachable
regions. Otherwise, we use its output to determine whether there are any unreachable nodes.

Destructive Operations. The DCConnected reduction requires calling GCInsert and GCDelete,
which modify the heap, even though DCConnected is a read-only operation. To address this, we

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:13

a b c

d

(a) A directed graph for which the DCDS is asked
to maintain connectedness information.

root X

a b c

d

(b) The corresponding heap graph constructed in
the underlying GCDS used in the reduction.

root X

a b c

d

(c) Checking 𝑑 →+ 𝑐 . No nodes become unreach-
able, so they are connected.

root X

a b c

d

(d) Checking 𝑐 →+ 𝑎. The node 𝑎 becomes un-
reachable, so they are disconnected.

Fig. 6. Illustration of the reduction from DCDS to GCDS (Algorithms 11–14).

checkpoint and restore the data structure (Section 4.2) so the persistent store does not see any
writes performed during the call to DCConnected.

Example 4.3. Figure 6 illustrates our reduction constructing a DCDS given an GCDS. As sketched,
the GCDS heap will look like a copy of the DCDS graph, except with an auxiliary node 𝑋 that has
edges from the root and to every other node (compare Figure 6a and Figure 6b). DCDS insertion
and deletion operations are passed directly to their corresponding GCDS operation. To check for a
path 𝑑 →+ 𝑐 , we add edges root → 𝑑 and 𝑐 → 𝑋 , then root → 𝑋 (Figure 6c). If there is a path
𝑑 →+ 𝑐 , then 𝑐 will remain reachable from root and hence so will 𝑋 and hence so will every other
node (Figure 6c). Otherwise, if there is no such path, as in Figure 6d where we have checked for
a path 𝑐 →+ 𝑎, at least the node 𝑋 will become unreachable and so GCDelete will either report
unreachable nodes or time out. In either case, we know whether the path exists or not. □

We can now prove the reduction correct.

Theorem 4.4. Suppose a GCDS has all-reachable worst-case pause times 𝑡AR (𝑛) and worst-case

delay 𝑑 (𝑛) (Definitions 3.4, 3.2). Then there exists a DCDS taking time 𝑂 (𝑡AR (𝑛)𝑑 (𝑛)) per operation.
Proof. Figure 5 constructs such a DCDS assuming access to such a GCDS. DCInsert and

DCDelete call the corresponding GC operation, ensuring the GCDS sees a mirror of the graph.
DCConnected(𝑣𝑖 →+ 𝑣 𝑗 ) is slightly more complicated. We insert the edge root→ 𝑣𝑖 and remove

the edge root→ 𝑋 . Hence, the root is directly connected only to 𝑣𝑖 , and 𝑣 𝑗 will be reachable from
root if and only if there is a path 𝑣𝑖 →+ 𝑣 𝑗 . But because 𝑣 𝑗 → 𝑋 and 𝑋 has an edge to every other
node, the entire heap remains reachable if and only if there is a path 𝑣𝑖 →+ 𝑣 𝑗 . Hence, after timing
out GCDelete in order to use it as a binary decider whether any node has become disconnected,
the result tells us whether there is a path 𝑣𝑖 →+ 𝑣 𝑗 . □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:14 Matthew Sotoudeh

Note that the theorem holds even if we do not know the precise expression for 𝑡AR (𝑛) and 𝑑 (𝑛); as
long as we know an asymptotic upper bound, it is possible (in theory) to carry out the construction
in Figure 5 and hence the lower bound holds. We now note the following important corollaries:

Corollary 4.5. Any correct GCDS must have 𝑡AR (𝑛)𝑑 (𝑛) = Ω̃(log3/2 𝑛).
Proof. By the prior theorem and that of Larsen and Yu [2023]. □

Corollary 4.6. Any correct GCDS must have 𝑡 (𝑛)𝑑 (𝑛) = Ω̃(log3/2 𝑛).
Proof. By the prior corollary and Lemma 3.7. □

4.4 Hints to the Data Structure
Our reduction has the following property: if the DCDS graph is acyclic, then all cycles in the heap
seen by the GCDS go through the 𝑋 ↔ 𝑣 𝑗 edge. Because the lower bound from Larsen and Yu
[2023] holds even when restricted to acyclic graphs, no GCDS can beat the Ω̃(log3/2 𝑛) lower bound
even if the data structure is told that all cycles are cut by a single edge, and given that edge. This is
an example where weak–strong pointer annotations do not help: the edge is necessary to reach
many nodes, hence it cannot be weak, but also inherently introduces cycles, hence it cannot be
strong.

4.5 Conditional Lower Bounds
The graph algorithms community has proposed a problem, the online matrix-vector multiplication

problem (OMV) [Henzinger et al. 2015], that they conjecture to be hard. Similar to the exponential
time conjecture about SAT, the OMV conjecture implies other problems should have certain lower
bounds as well. In particular, the OMV conjecture would imply that the DCDS problem is lower
bounded by Ω(𝑛) and hence it would imply any GCDS has 𝑡AR (𝑛)𝑑 (𝑛) = Ω(𝑛) and therefore also
that 𝑡 (𝑛)𝑑 (𝑛) = Ω(𝑛).

5 Sparse, Acyclic Lower Bound
In the last section we proved 𝑡AR (𝑛)𝑑 (𝑛) = Ω̃(log3/2 𝑛), implying that for any GCDS with 𝑑 (𝑛) =
𝑂 (1) there is a sequence of operations where (i) one of the operations takes time at least Ω̃(log3/2 𝑛)
and (ii) none of the operations makes anything unreachable. However, no clear guarantee was
made about the shape of the heap in that worst-case-triggering sequence, e.g., triggering the
Ω̃(log3/2 𝑛)-time pause might require a heap with cycles or many outgoing edges from each region.
To address these concerns we prove in this section that 𝑡S,A,AR (𝑛)𝑑 (𝑛) = Ω(log𝑛). In other words,

for any GCDS with 𝑂 (1) worst-case collection delay there is a sequence of operations (in fact, a
family of sequences of operations, one for each 𝑛) where:
(1) One of the operations takes time at least Ω(log𝑛);
(2) None of the operations makes anything unreachable;
(3) At all points, the heap is acyclic; and
(4) At all points, the heap is sparse.

(Section 7 will prove that the reduction in bound from log3/2 𝑛 to log𝑛 is unavoidable.)

5.1 Layered Permutation Graph Connectivity
We are not aware of any way to prove the desired result using the result of Larsen and Yu [2023].
Instead, this section presents a reduction from the layered permutation connectivity problem, defined
on the next page.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:15

Definition 5.1. A layered permutation connectivity data structure (LPCDS) is identical to aDCDS (Def-
inition 4.1) except each vertex is assigned a layer number and the caller promises:
(1) Edges will only be inserted from one layer to the subsequent one,
(2) Connectedness queries always start from the first layer, and
(3) Every vertex has indegree and outdegree at most one.

To distinguish LPCDS operations from DCDS, we call them LPCInsert, LPCDelete, LPCConnected.

Pǎtraşcu and Demaine [2004] prove that any such data structure requires at least Ω(log𝑛)
time in the cell probe model (Section 3.4) [Yao 1978], even when amortized over arbitrarily long
sequences of operations. The presentation here differs slightly from that of Pǎtraşcu and Demaine
[2004] because they consider undirected graphs and do not provide the algorithm with the layer
information directly; Appendix C explains how lower bounds from their work apply to this problem
as well.

Theorem 5.2. ([Pǎtraşcu and Demaine 2004]) Every LPCDS has worst-case Ω(log𝑛) per-operation
time.

5.2 Our Reduction
We will assume access to a GCDS that is efficient on sequences of operations where nothing
becomes unreachable and the heap remains sparse and acyclic. We must use this GCDS to build an
efficient algorithm for the LPCDS problem.
The reduction we will use is very similar to the general one described in Section 4.3. However,

that reduction relied fundamentally on the insertion of a cycle, namely, 𝑋 ↔ 𝑣 𝑗 , so it seems unclear
how to make use of the assumption about a time bound that applies only when the heap is acyclic.
The key is to use a slightly different reduction, shown in Algorithms 15–18. The below example
illustrates this reduction.

Example 5.3. Consider the layered permutation graph in Figure 8a. Our goal is to use an efficient
GCDS to quickly answer connectedness queries in such graphs. Our reduction makes a copy of
the layered permutation graph in the GCDS, and connects root to every node with no incoming
edges so the graph remains connected (Figure 8b). To check for a path 𝑎 →+ 𝑏, we add an edge
from 𝑏 → 𝑎 and then disconnect 𝑎 from root. If they are connected, i.e., they are on the same
path (Figure 8c), then a cycle will be inserted and both will become unreachable. If they are not

connected, i.e., they belong to different paths, then 𝑏 will remain connected and hence so will 𝑎 and
everything else along its path without the introduction of any cycles (Figure 8d). In either case, the
presence of cycles or unreachable nodes tells us whether a path exists. Because we are assuming
the GCDS is fast when no cycles are present and nothing becomes unreachable, we can use the
same timeout idea to quickly check for these conditions. □

We can now prove the main theorem of this section.

Theorem 5.4. Suppose someGCDS has sparse, acyclic, all-reachable worst-case pause times 𝑡S,A,AR (𝑛)
and worst-case delay 𝑑 (𝑛). Then there exists an LPCDS taking time 𝑂 (𝑡S,A,AR (𝑛)𝑑 (𝑛)) per operation.

Proof. The algorithms for the reduction are given in Figure 7. We mirror the graph into the
GCDS heap, but add an edge from root to every node with indegree zero. This ensures every node
is reachable via a unique path from root.
To check if 𝑣𝑖 →+ 𝑣 𝑗 , i.e., whether 𝑣 𝑗 is in the path starting at 𝑣𝑖 , we add 𝑣 𝑗 → 𝑣𝑖 then disconnect

𝑣𝑖 from root. If they are connected, we introduced a cycle and severed the unique path to 𝑣𝑖 and 𝑣 𝑗 .
Otherwise, no cycle is inserted and 𝑣𝑖 remains accessible via the path from 𝑣 𝑗 . In either case, the
algorithm correctly reports the (non)existence of such a path to the caller. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:16 Matthew Sotoudeh

Algorithm 15: LPCInsert(𝑣𝑖 → 𝑣 𝑗 )
1 𝑣𝑖 , 𝑣 𝑗 ← LPCCreate(𝑖, 𝑗);
2 GCInsert(𝑣𝑖 → 𝑣 𝑗 );
3 GCDelete(root→ 𝑣 𝑗 );

Algorithm 16: LPCDelete(𝑣𝑖 → 𝑣 𝑗 )
1 𝑣𝑖 , 𝑣 𝑗 ← LPCCreate(𝑖, 𝑗);
2 GCInsert(root→ 𝑣 𝑗 );
3 GCDelete(𝑣𝑖 → 𝑣 𝑗 );

Algorithm 17: LPCCreate(𝑖1, 𝑖2, . . .)
1 for 𝑖𝑘 ∈ 𝑖1, 𝑖2, . . . do
2 if 𝑖𝑘 ∉ 𝑁 then

3 𝑁 (𝑖𝑘 ) ← GCAllocate();
4 return 𝑁 (𝑖1), 𝑁 (𝑖2), . . .;

Algorithm 18: LPCConnected(𝑣𝑖 →+ 𝑣 𝑗 )
1 Checkpoint;
2 𝑣𝑖 , 𝑣 𝑗 ← LPCCreate(𝑖, 𝑗);
3 GCInsert(𝑣 𝑗 → 𝑣𝑖 );
4 if GCDelete(root→ 𝑣𝑖 ) runs for more than 𝑡S,A,AR (𝑛) instructions or GCFreeList is not

empty then

5 Restore;
6 return Connected;
7 foreach 𝑖 ∈ 1, 2, . . . , 𝑑 (𝑛) do
8 if GCStep() runs for more than 𝑡S,A,AR (𝑛) instructions or GCFreeList is not empty then

9 Restore;
10 return Connected;
11 Restore;
12 return Disconnected;

Fig. 7. Reduction from LPCDS to GCDS.

Hence, we immediately get the following two corollaries:

Corollary 5.5. Any correct GCDS must have 𝑡S,A,AR (𝑛)𝑑 (𝑛) = Ω(log𝑛).

Proof. By the prior theorem and that of Larsen and Yu [2023]. □

5.3 Connection to Cyclic Reference Counting
The results in this section connect closely to the field of cyclic reference counting, which is focused on
extending reference counting to support heaps with cycles. One of the first algorithms, from Brown-
bridge [1985], claimed to support immediate collection of all unreachable regions, even in the
presence of cycles, while ensuring 𝑂 (1) pause times for acyclic heaps, i.e., violating Corollary 5.5.
But it was discovered to be incorrect by Salkild [1985]. If the lower bounds in this section were
known at the time, sanity checking that something is wrong with the claims would have been
significantly easier. More recently, the English translation of Pepels et al. [1988] also claims to beat
our lower bound, i.e., guarantee immediate collection for all heaps and also guarantee 𝑂 (1) pause
times when the heap is acyclic. We believe this claim is simply a mistranslation; nonetheless, we
provide in Appendix B a counterexample to the claim.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:17

𝑣1,1

𝑣1,2

𝑣1,3

𝑣2,1

𝑣2,2

𝑣2,3

𝑣3,1

𝑣3,2

𝑣3,3

(a) A layered permutation graph as in Pǎtraşcu and
Demaine [2004].

root

𝑣1,1

𝑣1,2

𝑣1,3

𝑣2,1

𝑣2,2

𝑣2,3

𝑣3,1

𝑣3,2

𝑣3,3

(b) The corresponding heap graph we use for the
lower bound reduction.

root

𝑣1,1

𝑣1,2

𝑣1,3

𝑣2,1

𝑣2,2

𝑣2,3

𝑣3,1

𝑣3,2

𝑣3,3

(c) Checking 𝑣1,1 →+ 𝑣3,2. A cycle is introduced
and 𝑣1,1 becomes unreachable, so they are con-
nected.

root

𝑣1,1

𝑣1,2

𝑣1,3

𝑣2,1

𝑣2,2

𝑣2,3

𝑣3,1

𝑣3,2

𝑣3,3

(d) Checking 𝑣1,1 →+ 𝑣3,1. The graph remains
acyclic and nothing becomes unreachable, so they
are disconnected.

Fig. 8. Illustration of the reduction from the problem of Pǎtraşcu and Demaine [2004] to GCDS.

6 Application-Level Implications of Lower Bounds
We now briefly review the application-level consequences of the lower bounds in the last two
sections. Consider a programming language with a garbage collector implementing the relatively
standard GCDS interface, i.e., in an abstract sense, it sees the program as a sequence of pointer
insertions and removals.

6.1 Main Lower Bound, Existence of Real-Time Violations
Suppose the language enforces a memory limit𝑀 . Suppose the underlying collector enforces an
𝑂 (1) pause time limit, i.e., 𝑡 (𝑛) = 𝑂 (1). Theorem 4.4 and Corollary 4.5 imply there exists at least
one program of the following form:
(1) First fill the memory up to the limit with equal-sized allocations and perform some pointer

manipulations while keeping every region reachable;
(2) Then, overwrite a pointer to make some region unreachable (collectable);
(3) Then, request a new allocation;

such that the region made collectable in the second step takes Ω̃(log3/2𝑀) program steps to
collect. Hence, in the third step, either the program must introduce a Ω̃(log3/2𝑀)-time pause to
complete collection, or it must incorrectly report out-of-memory. Either case could be catastrophic
in real-time contexts.

6.2 Acyclic Lower Bound
Suppose again that the language attempts to guarantee for the user that finalizers are called reliably
and promptly, i.e., 𝑑 (𝑛) = 𝑂 (1). The second lower bound also implies that there must exist a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:18 Matthew Sotoudeh

program, even a program where nothing ever becomes unreachable and the heap stays sparse

and acyclic, where this language introduces an Ω(log𝑛)-length pause time after some program
operation. Equivalently, reference counting can not be extended to handle cycles without slowing
down execution on some program that only makes acyclic heap structures.

7 Upper Bound
Section 5 showed that any GCDS guaranteeing constant collection delay for all programs (𝑑 (𝑛) =
𝑂 (1)) must introduce significant slowdown on some program making only a sparse, acyclic heap,
even if that program never makes any region unreachable (𝑡S,A,AR (𝑛) = Ω(log𝑛)).

This section shows that this bound is tight: there is a GCDS that guarantees constant collection
delay for all programs (𝑑 (𝑛) = 1), and guarantees that no operation takes longer than 𝑂 (log𝑛)
time when the heap is acyclic and nothing becomes unreachable (𝑡A,AR (𝑛) = 𝑂 (log𝑛)). In fact, we
will eventually show the stronger fact that, when the heap is acyclic, our GCDS has exactly an
𝑂 (log𝑛)-factor slowdown compared to reference counting.

The key difference with reference counting, however, is that our algorithm still guarantees
constant collection delay even in the presence of cycles. Combined with the lower bound in the
prior section, this algorithm has optimal acyclic, all-reachable worst-case pause times among all
algorithms that guarantee 𝑑 (𝑛) = 𝑂 (1). However, because it involves both frequent balanced tree
operations and increased (though still constant sized) metadata per allocation region, we have found
that it is not competitive in non-pathological cases with traditional garbage collection algorithms.
Hence, we do not recommend it as a general-purpose GC; its primary purpose is to answer the
theoretical questions described above.

The algorithm itself is adapted from similar algorithms for dynamic connectivity in undirected
graphs [Holm et al. 2001; Kapron et al. 2013]. Like those, the key idea is to maintain a spanning
tree of the reachable heap in an Euler tour data structure (Section 7.1). The main complication is
updating the spanning tree when an edge in the spanning tree is removed from the heap. Prior
work has devised many clever techniques for quickly updating the spanning tree when the graph is
undirected, however, these techniques are not immediately applicable to the directed case needed
for proper GC. Instead, we identify a strategy for updating spanning trees of directed graphs that is
sufficient to guarantee the 𝑂 (log𝑛) time when the graph is acyclic.

7.1 Euler Tour Data Structure
Our algorithm relies on the Euler tour data structure, which is a well-known data structure for
efficiently storing and manipulating directed forests. A directed tree is a graph (𝑉 , 𝐸) that has
exactly |𝑉 | − 1 edges and a distinguished root vertex that can reach every other node. A directed

forest is a disjoint union of directed trees. The Euler Tour data structure stores a directed forest
while allowing efficient edge insertions, edge deletions, and connectedness queries.

Definition 7.1. The Euler Tour data structure (ETDS) stores directed forests and supports:
• ETSingleton() returns a new singleton tree in the forest.
• ETCut(𝑎 → 𝑏) splits a tree into two by removing the edge 𝑎 → 𝑏.
• ETLink(𝑎 → 𝑏) links a tree containing 𝑎 and one rooted at 𝑏 by inserting the edge 𝑎 → 𝑏.
• ETPath(𝑎 →+ 𝑏) is true if and only if there is a directed path from 𝑎 to 𝑏 in the forest.
• ETParent(𝑎) returns the immediate parent of 𝑎 in the tree.
• ETNext(𝑎) returns the node after 𝑎 in the preorder traversal of the tree.

There exist deterministic algorithms for the Euler tour data structure where ETSingleton, ETCut,
ETLink, and ETPath all take time𝑂 (log𝑛) while ETNext and ETParent take time𝑂 (1). The insight

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:19

Algorithm 19: GCInit()
1 root← ETSingleton();

Algorithm 20: GCInsert(𝑎 → 𝑏)
1 𝐸 (𝑎 → 𝑏) ← 𝐸 (𝑎 → 𝑏) + 1;

Algorithm 21: GCAllocate()
1 𝑛 ← ETSingleton();
2 ETLink(root→ 𝑛);
3 𝐸 (root→ 𝑛) ← 1;
4 return 𝑛;

Algorithm 22: GCStep()
1 no-op;

Algorithm 23: GCDelete(𝑎 → 𝑏)
1 𝐸 (𝑎 → 𝑏) ← 𝐸 (𝑎 → 𝑏) − 1;
2 if 𝐸 (𝑎 → 𝑏) > 0 or ETParent(𝑏) ≠ 𝑎 then return ;
3 ETCut(𝑎 → 𝑏);
4 while ⊤ do

5 𝐷 ← ∅ ; /* Nodes earlier in the preorder traversal */

6 𝑐 ← ⊥ ; /* Continue iterations, or reached fixedpoint? */

/* Iterate over the tree rooted at 𝑏; keep two pointers so we can

continue the iteration even if a subtree is cut out. */

7 𝑝, 𝑛 ← ⊥, 𝑏;
8 while 𝑛 is not none do

/* Look for a new parent either in the main spanning tree or later

in the preorder traversal. */

9 Find𝑚 such that 𝐸 (𝑚 → 𝑛) > 0,𝑚 ∉ 𝐷 , and ¬ETPath(𝑛 →+ 𝑚);
10 if there is an𝑚 satisfying those conditions then

11 ETCut(𝑛) ; /* Cut subtree away from the separated spanning tree */

12 ETLink(𝑚 → 𝑛) ; /* Reconnect it to the new parent */

13 if 𝑛 = 𝑏 then return;
14 if ETPath(root→+ 𝑛) then 𝑐 = ⊤;
15 𝑝, 𝑛 ← 𝑝, ETNext(𝑝) ; /* Skip that subtree */

16 else

17 𝐷 ← 𝐷 ∪ {𝑛} ; /* Do not link later nodes here */

18 𝑝, 𝑛 ← 𝑛, ETNext(𝑛) ; /* Continue the preorder traversal */

19 if 𝑐 = ⊥ then

20 GCFreeList← GCFreeList ∪ 𝐷 ;
21 return

is to represent each tree by its Euler tour. This Euler tour is itself stored in a balanced binary tree.
See Tarjan and Vishkin [1984] for a detailed discussion of the algorithms.

7.2 Algorithm and Pseudocode
For ease of exposition the majority of the section describes a simplified algorithm that only guaran-
tees short worst-case pause times when the heap is both sparse and acyclic. Then in Section 7.4
we describe minor optimizations that permit the same guarantees when the heap is dense. The
proposed GCDS is described by Algorithm 21–23. It stores two pieces of information:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:20 Matthew Sotoudeh

root𝑏

𝑛1 𝑛2 𝑛3

𝑛4

𝐷

(a) Here, the algorithm already visited 𝑏 and 𝑛1. Nei-
ther had an incoming edge from a node not in 𝐷
or from the main spanning tree (which is now just
root), so they both are added to 𝐷 .

root𝑏

𝑛1 𝑛2 𝑛3

𝑛4

𝐷

(b) The only edge to 𝑛2 that is from a node neither
in 𝐷 nor a tree-descendant of 𝑛2 is 𝑛3 → 𝑛2. Hence,
we update the spanning tree by cutting 𝑛2 from its
parent and linking it to 𝑛3.

root𝑏

𝑛1 𝑛2 𝑛3

𝑛4

𝐷

(c) A similar analysis finds that 𝑛3 can be rooted at
root → 𝑛3, so the spanning tree is updated. This
links 𝑛3 and its entire subtree, including 𝑛2 and 𝑛4,
to the main spanning tree.

root

𝑛2 𝑛3

𝑛4

(d) A final iteration of the loop finds that nothing
else can be connected to the main spanning tree,
hence 𝐷 = {𝑏, 𝑛1} can be deleted from the graph and
freed in the program.

Fig. 9. Visualizing the operation of GCDelete(root→ 𝑏). The red dotted edge is the deleted edge. The solid
edges represent edges in the spanning trees. The dashed edges represent edges in the heap graph that are not
currently part of the spanning tree. The visualization starts after two nodes in the preorder have already been
visited. We then visit 𝑛2, relinking it to 𝑛3. After visiting 𝑛3 and relinking it to root, the maximal spanning
tree is restored and the remaining nodes can be freed. The blue box represents the set 𝐷 from Algorithm 23.

(1) An Euler Tour Tree representation of a spanning forest for the heap graph, and
(2) A map from edges to multiplicity that can be queried for all edges ending in a given node.
To allocate a new node, we create the node in the ETT, then link that ETT node to the one for

root. Inserting an edge does not need to update the spanning tree because we know the node was
already reachable from root and hence already part of the spanning tree.
Deleting an edge 𝑎 → 𝑏 is more difficult. If 𝑎 is not the parent of 𝑏, i.e., 𝑎 → 𝑏 is not in the

spanning tree, we simply remove it from the edges map and leave the tree unchanged. Otherwise,
if 𝑎 → 𝑏 was an edge in the spanning tree, we cut 𝑏 from the spanning tree and begin a preorder
iteration of the newly separated tree rooted at 𝑏. For each node 𝑛, we iterate over its incoming
edges𝑚 → 𝑛 looking for one where𝑚 is not a descendant of 𝑛 and either (i)𝑚 is part of the main
spanning tree, or (ii)𝑚 is in the separated tree but not yet visited. If an incoming edge𝑚 → 𝑛
satisfying those two conditions is found, we cut the subtree rooted at 𝑛 out of the tree and relink it
at𝑚. Intuitively, this process pushes subtrees either back into the main spanning tree or further
down the preorder traversal of the newly separated tree. We repeat this sweeping operation until
the entire sweep reveals no nodes with incoming edges from the main spanning tree, at which
point we know the entire separated tree is unreachable. (Note ETNext(𝑝) = ⊥ only when 𝑛 = 𝑏,
hence line 15 will never be reached with ETNext(𝑝) = ⊥ — it would instead return on line 13.)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:21

Example 7.2. The execution of GCDelete is visualized in Figure 9. We start with a heap having
six nodes, where the spanning tree is made up of edges root→ 𝑏, 𝑏 → 𝑛1, 𝑏 → 𝑛2, 𝑏 → 𝑛3, and
𝑛2 → 𝑛4. Then, the operation GCDelete(root→ 𝑏) is performed.

First, the algorithm visits 𝑏, finding that, after removing the edge root → 𝑏, it has no other
incoming edges at all. Hence, it is added to the set 𝐷 and we continue the preorder sweep to its
child 𝑛1. The only incoming edge to 𝑛1 is 𝑏 → 𝑛1, but 𝑏 ∈ 𝐷 so we also add 𝑛1 to 𝐷 and continue
the sweep. The resulting state is illustrated in Figure 9a.
Next in the preorder is node 𝑛2. The incoming edge 𝑏 → 𝑛2 is not usable because 𝑏 ∈ 𝐷 .

Meanwhile, the edge 𝑛4 → 𝑛2 is not usable because 𝑛4 is a descendant of 𝑛2 in the spanning tree —
adding that edge would cause a cycle. Finally, we find that the edge 𝑛3 → 𝑛2 works, so we unlink 𝑛2
from 𝑏 and reconnect it to the spanning tree via 𝑛3. The resulting state is illustrated in Figure 9b.
Finally we visit 𝑛3. The edge from 𝑏 is unusable because 𝑏 ∈ 𝐷 , but the edge from root can

be used. This reconnects 𝑛3 to the main spanning tree, which now contains 𝑛3, 𝑛2, and 𝑛4. The
resulting state is illustrated in Figure 9c.

Because we have reconnected something to the main spanning tree during this sweep, we must
resweep across the remaining two nodes in the spanning tree rooted at 𝑏 (𝑏 and 𝑛1). Neither can be
reconnected to the main spanning tree, i.e., the one rooted at root, so the algorithm completes by
removing those nodes and adding them to GCFreeList. □

With the operation of the algorithm now illustrated, we can prove correctness and termination.
Theorem 7.3. Algorithms 19–23 terminate and correctly implement a GCDS with 𝑑 (𝑛) = 1.
Proof. The algorithm maintains a maximal spanning tree from root. This property follows

immediately for GCInit(), GCInsert(), and GCAllocate(). To see correctness of GCDelete, first
note we only ever call ETLink on edges that actually exist in the graph, so the spanning tree is at
least a subset of the maximal spanning tree. Second, note that a node is only added to 𝐷 if it has no
incoming edges from the main spanning tree, and the algorithm only halts when 𝐷 contains all the
nodes in the newly separated tree. Hence, there can be no edges from the main spanning tree to
any node in the newly separated tree, i.e., the main spanning tree is indeed maximal.
For termination, it suffices to note that on every iteration of the outer loop except the last at

least one node is moved to the main spanning tree. To see that 𝑑 (𝑛) = 1, it suffices to note that
GCDelete eagerly adds any newly unreachable nodes to the free list. □

7.3 Sparse, Acyclic, All-Reachable Worst-Case Pause Time
We now prove that the GCDS has 𝑡S,A,AR (𝑛) = 𝑂 (log𝑛), i.e., worst-case logarithmic pause times
when the heap is sparse and acyclic and nothing becomes unreachable. The time bounds for all
operations except for GCDelete follow immediately from those of the underlying data structures,
so we primarily focus on GCDelete.

We can prove the stronger fact that, when the heap is sparse and acyclic, GCDelete runs in time a
logarithmic factor slower than the number of newly unreachable edges. Because reference counting
runs in time proportional to the number of newly unreachable edges, this implies our GCDS runs
with only a logarithmic factor overhead compared to eager reference counting as long as the heap
is sparse and acyclic. We will use the symbol Δ for the number of edges that become unreachable;
this is identical to the number of counter decrements that reference counting would have to do.

Theorem 7.4. If 𝑏 cannot reach any cycles, every node reachable from 𝑏 has 𝑂 (1) indegree, and Δ
edges become unreachable after removing 𝑎 → 𝑏, then GCDelete(𝑎 → 𝑏) runs in time 𝑂 (Δ log𝑛).

Proof. In the acyclic case, ETPath(𝑛 →+ 𝑚) is impossible. Hence, a node is only added to 𝐷
when all of its predecessors are in 𝐷 . Because 𝐷 is initially empty, induction ensures 𝐷 contains

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:22 Matthew Sotoudeh

only nodes that are now unreachable from root. This implies the outer loop iterates exactly twice,
as the first iteration identifies and links all still-reachable nodes back to the main spanning tree.

Because we skip over subtrees when a new parent is found, we only visit a node when its parent
was added to 𝐷 . In that case, the parent is unreachable so the edge from the parent to the node is
counted by Δ. This ensures we do not visit any node too many times. Finally, thanks to sparsity, only
𝑂 (1) incoming edges must be analyzed for each visited node. Each such iteration costs 𝑂 (log𝑛) to
check for the existence of a path. Together, these imply the desired𝑂 (Δ log𝑛) time complexity. □

We now note the following corollary:

Corollary 7.5. The GCDS guarantees 𝑑 (𝑛) = 1 and 𝑡S,A,AR (𝑛) = 𝑂 (log𝑛).
Proof. The delay claim follows from Theorem 7.3. The time follows from Theorem 7.4 (𝑡S,A,AR (𝑛)

only counts operations where nothing becomes unreachable, i.e., Δ = 1 in Theorem 7.4). □

7.4 Handling Dense Heaps
The above time bound is within an 𝑂 (log𝑛) factor of reference counting when the graph is sparse
and acyclic. The sparsity requirement can be eliminated by memoizing edge information when
searching for a new parent. If the same node is visited twice along a single sweep, any incoming
edges that were invalid during the first time it was visited are still invalid the second time. Hence,
we can keep a pointer for each node to the last edge we examined, avoiding revisiting edges in later
iterations. This guarantees, in the acyclic case, that you only look at truly dead edges, i.e., at most
𝑂 (Δ) edges, for an overall time 𝑂 (Δ log𝑛), a log-factor overhead compared to reference counting.

7.5 Memory Overhead
When a node is added to the free list, it will never be referred to again. Hence, GCDelete can free
any related internal data structure memory, e.g., the corresponding Euler tour tree nodes. The
overall scheme then has constant-factor memory overhead: every nonfreed memory region has a
corresponding ETT node, and every heap pointer has a corresponding entry in the edge map.

7.6 Exploratory Implementation and Evaluation
This paper is primarily theoretical, but we wondered how the above algorithm would perform
in practice. We implemented a variant of it as a GC for Lua. Lua was a convenient choice for
implementation as it is a popular language with a relatively simple implementation. It uses a
tricolor tracing GC, which is considerably more involved than the naïve eager mark-and-sweep
approach but significantly less sophisticated than modern GCs used by Java, Javascript, etc.
We also compared to an existing GC algorithm that can be configured to guarantees 𝑂 (1)

collection delay, namely, we translated Figure 2 (“Synchronous Cycle Collection,” SynCC) of [Bacon
and Rajan 2001] into C and ran its CollectCycles routine after every pointer decrement. Notably,
this always-collect configuration is not suggested by [Bacon and Rajan 2001], but it does guarantee
immediate collection in the presence of cycles (the same guarantee our ETT-based algorithmmakes).
Experiments were performed on an Intel(R) Core(TM) i9-13900, with 32 GB of memory running
Debian 12 and the jemalloc allocator. Other evaluation details are in Appendix E.

7.6.1 Motivating GC Thrashing Example. Recall the motivating example from Section 2.1, where
frequent collections were needed in a memory-constrained scenario. The resulting GC thrashing
increased the time from approximately 1.1 seconds for a version of the program using manual
memory management to almost 70 seconds when the limit was enforced. We reran the same
benchmark with both SynCC and our proposed GC. SynCC took approximately 1.1 seconds while
ours took 1.4 seconds. SynCC performs better because the heap is simple and does not have any

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:23

Table 1. Times are averaged over 5 runs. Overhead is reported as a ratio compared to the default Lua
interpreter; 1× means no overhead. “Nonimmediate” is the default Lua collector, while “SynCC” is another
collector also guaranteeing 𝑑 (𝑛) = 1 (see description in Section 7.6). Guaranteeing prompt collection usually
takes additional time, but our approach was faster than SynCC. Our approach has higher memory overhead
due to additional metadata overhead per allocation region to store the ETDS. The reader should be careful
to note that the default Lua collector (“Nonimmediate”) is relatively naïve compared to the standard Java,
JavaScript, etc., collectors, hence in corresponding experiments for those languages we would expect the
“Nonimmediate” times and memory usage to be lower and the overhead columns to be higher.

Nonimmediate SynCC Overhead Our Overhead

Benchmark Time (s) Mem (B) Time Mem Time Mem

binarytrees-15 0.3692 13044566.00 3.1642× 1.2950× 2.1207× 2.9869×
helloworld 0.0016 97413.00 0.9957× 1.1572× 0.9874× 1.6261×
merkletrees-15 0.9468 20163331.00 3.3933× 1.6099× 1.7635× 3.5153×
nbody-100000 0.0973 108750.00 1.6883× 1.1982× 0.9889× 1.7376×
specnorm-1000 0.8710 147047.00 1.5239× 1.1336× 1.2688× 1.4862×
list-4096 0.0026 1537362.00 1562.9055× 1.6088× 1.6452× 3.4310×
dbllist-4096 0.0033 2061658.00 2742.9327× 1.5811× 1.9720× 3.1942×

long pointer chains; in Section 7.6.2 we will see scenarios where we beat SynCC by multiple orders
of magnitude. This example clearly demonstrates a need for fast, prompt collection and shows that
GCs with constant delay can sometimes improve performance over a traditional tracing collector.

7.6.2 General Benchmarks. Finally, Table 1 shows the timing results for multiple Lua benchmarks,
most taken from [plb 2023]. The default Lua collector usually has better end-to-end time than both
of the immediate collectors. This is unsurprising, because it makes no guarantees about when or
whether regions will be collected and finalizers will be called. In fact, the Lua interpreter is partially
optimized for implementation size and simplicity so its GC is naïve vs. those in Java, Javascript, etc.
Hence, we would expect on such languages there would be an even wider gap between the default
collector’s performance and the two immediate collectors.
Between the two collectors guaranteeing 𝑑 (𝑛) = 1, our time overhead is consistently better

than that of SynCC. This is highlighted by the list-4096 benchmark, which builds and then
traverses a long linked list (the dbllist-4096 is similar, except uses a doubly linked list). Our
technique guarantees an asymptotic 𝑂 (log𝑛) factor overhead for such acyclic structures. On the
other hand SynCC must scan nearly the entire heap after every operation on a node, introducing an
asymptotic 𝑂 (𝑛) factor overhead on program operations. Notably, our approach has a comparably
high memory overhead due to the need to store metadata (splay tree nodes for the ETDS). Although
this memory overhead is a constant factor of the number of allocations, it is larger than that needed
for reference counting or nonimmediate collection. Hence we do not suggest our algorithm as a
good general-purpose collector, but rather an interesting and nonobvious point in the space of
asymptotic tradeoffs that could perhaps inspire future applications.

8 Limitations, Open Problems, and Future Work
The exact worst-case GCDS pause time–delay tradeoff is left open by our paper. Appendix F
provides a reduction from GCDS to DCDS implying any improved GCDS lower bounds would
immediately give stronger DCDS bounds. Hence, because lower bounds for the DCDS problem
have resisted significant improvement despite a large amount of research effort, it is unlikely that
significantly improved GCDS bounds can be found without novel lower bound techniques.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:24 Matthew Sotoudeh

Our analysis focused on collection delay, motivated by pathological cases where modern GCs
perform poorly when additional memory must be found quickly. It would be interesting to explore
other notions of garbage collection performance and bounds on the performance of compacting
collectors. Many compacting collectors are susceptible to our bounds because they can be converted
into inplace collectors [Baker 1992], but we have not formalized the extent of this connection.
We focused on asymptotic time complexity, ignoring memory overhead. Our upper bound

requires only a constant factor memory overhead, but the constant is larger than for reference
counting. It would be interesting to determine a fine-grained tradeoff lower bound between the
constant factor memory overhead required and the time overhead.

9 Related Work
See Knuth [1997] for various garbage collection techniques and their running time, and Henzinger
et al. [2015] for a survey of recent bounds for dynamic graph algorithms.

Early Garbage Collection Research. The need for GC was noticed almost immediately after the
development of the linked list data structure [Newell and Shaw 1957]. This led to a flurry of work on
GC, including reference counting [Collins 1960; Gelernter et al. 1960], mark-and-sweep [McCarthy
1960], hybrids [McBeth 1963], and copying collectors [Minsky 1963].

Tradeoffs between pause times, predictability, and leakage in different GC algorithms have been
debated since these early days. Weizenbaum [1962] publicized the failure of reference counting
to avoid leaks in the presence of cycles, but his solution had long pause times [McBeth 1963].
Weizenbaum [1964] suggested a hybrid collector, but pathological programs causing poor collector
performance remain to this day. We provide a precise, formal proof showing some such tradeoffs
are unavoidable.

Concurrent and Real-Time Garbage Collection. Modern GC can run concurrently with the pro-
gram [Bacon et al. 2003; Baker 1992; Jr. 1978; Lieberman and Hewitt 1983; Minsky 1963]. Many are
presented as so-called real-time collectors, meaning under certain well-defined scenarios they can
guarantee pause times do not exceed a certain constant limit and new allocations can always be
serviced [Baker 1992; Jr. 1978]. Per the lower bounds in this paper, all such schemes are susceptible
to the sort of pathological examples described in Section 2, where, e.g., programs operating close to
the memory limit must either reject allocations unnecessarily or introduce long pauses. For example,
Appendix D walks through an example program for which a classic real-time collector would have
to either reject allocations unnecessarily or introduce large pause times. In practice, this is avoided
by overprovisioning memory, because many real-time collectors can still make guarantees relating
the peak logical memory usage to the peak actual memory usage. But overprovisioning resources
is expensive, and difficult to do when memory limits depend on other programs sharing resources.

Cyclic Reference Counting. Many have attempted to modify reference counting to handle cycles
without requiring a full pass through the heap. A key paper, Salkild [1985], seems to be unavailable
today so our discussion about it is based on second-hand reports from other citations here.

Brownbridge [1985] proposed one approach in 1985, but Salkild [1985] soon discovered it might
free reachable memory. Apparently Salkild proposed a solution that did not guarantee termination,
and eventually Pepels et al. [1988] had found and proved correct a correct and terminating cyclic
reference counting scheme but no tight running time analysis was performed. Nowadays, algorithms
based on the local mark-scan of [Martínez et al. 1990] are more common in the literature, such
as Lins [1992] who removes the immediacy of cyclic reference counting. The similarity between
such algorithms and traditional mark-scan is observed by Bacon et al. [2004].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:25

As described in Section 5.3, Sections 7 and 5 answer a longstanding open question in cyclic
reference counting: can reference counting be modified to always collect cycles, while guaranteeing
reference counting-like overhead when the heap is acyclic? Section 5 says no: a logarithmic
slowdown is inevitable. Section 7 says only a logarithmic slowdown is needed.

Languages Supporting Garbage Collection. Popular implementations of the Java, Javascript, Lua,
Python, and Go languages all feature mature concurrent and/or generational mark-and-sweep
collectors [Go [n. d.]; Ierusalimschy [n. d.]; Marshall [n. d.]; Oracle [n. d.]; Salgado and Katriel
[n. d.]]. The Java language has been a particularly popular platform for GC research [Beronic
et al. 2022; Grgic et al. 2018a,b; Mao et al. 2009]. Garbage collectors also exist for the C and C++
languages [Boehm 1993; Rafkind et al. 2009].

Research on New Collection Algorithms. A particularly active area of modern research is in
designing collectors that work efficiently in the concurrent or distributed setting [Clebsch and
Drossopoulou 2013; Gog et al. 2015; Kang and Jung 2020; Kim et al. 2014] and in using different
heuristics than the standard generational approach [Hirzel et al. 2003]. Machine learning might be
able to improve GC performance in some common cases [Cen et al. 2020].

Analyzing Garbage Collection. Most authors seem to implicitly understand and take for granted
that any collector will have pathological cases with poor worst-case performance [Bacon et al.
2004; Knuth 1997], and focus instead on computing, e.g., the amount of memory needed to ensure
the limit is never reached [Bacon et al. 2003; Baker 1992; Jr. 1978]. More common are qualitative or
experimental comparisons between GC schemes [Bacon et al. 2004; Grgic et al. 2018a].

Evaluating and Handling Collector Tradeoffs. Empirical issues with modern collectors are well
known in the literature [Cai et al. 2022; Sareen and Blackburn 2022]. This paper complements that
existing work with formal limits on how much collectors may improve. Huang et al. [2023] have
attempted to help debug GC performance issues.

Dynamic Connectivity. Dynamic connectivity is a core problem in the study of dynamic graph
algorithms. Many lower bounds are known [Larsen and Yu 2023; Pǎtraşcu and Demaine 2004]
in the cell probe model [Yao 1978]. Nontrivial upper bounds are known for undirected dynamic
connectivity, primarily using Euler tour trees [Holm et al. 2001; Kapron et al. 2013]. The contribution
of our Section 7 is to show that, beyond just undirected graphs, acyclic directed graphs can also be
handled efficiently for our variant of the problem. Section 4 proves that the lower bounds for the
general connectivity problem also apply to the more restricted GC problem.

10 Conclusion
Collection delay is the worst-case time between a memory region first becoming unreachable in
the heap and the GC collecting it. Modern real-time GC algorithms accept suboptimal collection
delay in some pathological cases in order to guarantee constant-sized pause times when memory
is abundant. This motivates asking whether modern GCs can be modified to reduce the worst-
case delay without significantly increasing pause times. We provide a formal proof that extreme
improvement in the worst case is not possible: superlogarithmic collection delay is inevitable for
some pathological programs unless longer pause times are allowed. Our results hold for any GC
implementing a formal mutator-observer style interface defined in this paper. Our proofs work
via a nontrivial connection to fundamental data structures lower bounds, hence any stronger GC
lower bound than ours would lead immediately to an improvement in important data structure
lower bounds and vice-versa. We also describe a GC with some interesting asymptotic behavior,
although it introduces too much overhead to recommend in non-pathological settings.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.



96:26 Matthew Sotoudeh

Acknowledgements
I would like to thank the anonymous reviewers, whose suggestions have dramatically improved
the quality of the paper; Geoff Ramseyer, Alex Ozdemir, David K. Zhang, and Scott Kovach for
extended discussions improving this work; as well as Dawson Engler, Zachary Yedidia, Akshay
Srivatsan, members of the Stanford theory group, and attendees of the Stanford software lunch,
who provided helpful insights, conversations, and proofreading.

Data Availability Statement
Implementations of different GCs in the Lua interpreter (as evaluated in Section 7) are available at
https://doi.org/10.5281/zenodo.14942311 [Sotoudeh 2025].

Full Version With Appendices
The full version of this paper, with appendices, is available at https://doi.org/10.5281/zenodo.
14948284.

Funding Statement
This work was generously funded via grants NSF DGE-1656518 and Stanford IOG Research Hub
281101-1-UDCPQ 298911.

References
2023. Programming Language and compiler Benchmarks. https://programming-language-benchmarks.vercel.app/
David F. Bacon, Perry Cheng, and V. T. Rajan. 2003. A real-time garbage collector with low overhead and consistent

utilization. In Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, New Orleans, Louisisana, USA, January 15-17, 2003, Alex Aiken and Greg Morrisett (Eds.). ACM, 285–298.
https://doi.org/10.1145/604131.604155

David F. Bacon, Perry Cheng, and V. T. Rajan. 2004. A unified theory of garbage collection. In Proceedings of the 19th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2004, October 24-28, 2004, Vancouver, BC, Canada, John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, 50–68. https:
//doi.org/10.1145/1028976.1028982

David F. Bacon and V. T. Rajan. 2001. Concurrent Cycle Collection in Reference Counted Systems. In ECOOP 2001 - Object-

Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22, 2001, Proceedings (Lecture Notes in

Computer Science, Vol. 2072), Jørgen Lindskov Knudsen (Ed.). Springer, 207–235. https://doi.org/10.1007/3-540-45337-7_12
Henry G. Baker. 1992. The treadmill: real-time garbage collection without motion sickness. ACM SIGPLAN Notices 27, 3

(1992), 66–70. https://doi.org/10.1145/130854.130862
D. Beronic, N. Novosel, Branko Mihaljevic, and Aleksander Radovan. 2022. Assessing Contemporary Automated Memory

Management in Java - Garbage First, Shenandoah, and Z Garbage Collectors Comparison. In 45th Jubilee International

Convention on Information, Communication and Electronic Technology, MIPRO 2022, Opatija, Croatia, May 23-27, 2022,
Neven Vrcek, Marko Koricic, Vera Gradisnik, Karolj Skala, Zeljka Car, Marina Cicin-Sain, Snjezana Babic, Vlado Sruk,
Dejan Skvorc, Alan Jovic, Stjepan Gros, Boris Vrdoljak, Mladen Mauher, Edvard Tijan, Tihomir Katulic, Juraj Petrovic,
Tihana Galinac Grbac, and Benjamin Kusen (Eds.). IEEE, 1495–1500. https://doi.org/10.23919/MIPRO55190.2022.9803445

J. Bloch. 2017. Effective Java. Pearson Education. https://books.google.com/books?id=BIpDDwAAQBAJ
Hans-Juergen Boehm. 1993. Space Efficient Conservative Garbage Collection. In Proceedings of the ACM SIGPLAN’93

Conference on Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25,

1993, Robert Cartwright (Ed.). ACM, 197–206. https://doi.org/10.1145/155090.155109
David R. Brownbridge. 1985. Cyclic Reference Counting for Combinator Machines. In Functional Programming Languages

and Computer Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings (Lecture Notes in Computer

Science, Vol. 201), Jean-Pierre Jouannaud (Ed.). Springer, 273–288. https://doi.org/10.1007/3-540-15975-4_42
Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas. 2022. Distilling the Real Cost of Production Garbage

Collectors. In International IEEE Symposium on Performance Analysis of Systems and Software, ISPASS 2022, Singapore,

May 22-24, 2022. IEEE, 46–57. https://doi.org/10.1109/ISPASS55109.2022.00005
Lujing Cen, Ryan Marcus, Hongzi Mao, Justin Gottschlich, Mohammad Alizadeh, and Tim Kraska. 2020. Learned garbage

collection. In Proceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning and Programming

Languages, MAPL@PLDI 2020, London, UK, June 15, 2020. ACM, 38–44. https://doi.org/10.1145/3394450.3397469

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.

https://doi.org/10.5281/zenodo.14942311
https://doi.org/10.5281/zenodo.14948284
https://doi.org/10.5281/zenodo.14948284
https://programming-language-benchmarks.vercel.app/
https://doi.org/10.1145/604131.604155
https://doi.org/10.1145/1028976.1028982
https://doi.org/10.1145/1028976.1028982
https://doi.org/10.1007/3-540-45337-7_12
https://doi.org/10.1145/130854.130862
https://doi.org/10.23919/MIPRO55190.2022.9803445
https://books.google.com/books?id=BIpDDwAAQBAJ
https://doi.org/10.1145/155090.155109
https://doi.org/10.1007/3-540-15975-4_42
https://doi.org/10.1109/ISPASS55109.2022.00005
https://doi.org/10.1145/3394450.3397469


Pathological Cases for a Class of Reachability-Based Garbage Collectors 96:27

Brent Christian and Stuart Marks. 2021. JEP 421: Deprecate Finalization for Removal. https://openjdk.org/jeps/421.
Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent garbage collection of actors on many-core machines. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th.
Eugster, and Cristina V. Lopes (Eds.). ACM, 553–570. https://doi.org/10.1145/2509136.2509557

Michael Coblenz, Michelle L. Mazurek, andMichael Hicks. 2022. Garbage Collection Makes Rust Easier to Use: A Randomized
Controlled Trial of the Bronze Garbage Collector. In 44th IEEE/ACM 44th International Conference on Software Engineering,

ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1021–1032. https://doi.org/10.1145/3510003.3510107
George E. Collins. 1960. A method for overlapping and erasure of lists. Commun. ACM 3, 12 (1960), 655–657. https:

//doi.org/10.1145/367487.367501
Herbert L. Gelernter, J. R. Hansen, and Carl L. Gerberich. 1960. A Fortran-Compiled List-Processing Language. J. ACM 7, 2

(1960), 87–101. https://doi.org/10.1145/321021.321022
Go. [n. d.]. A Guide to the Go Garbage Collector. https://tip.golang.org/doc/gc-guide.
Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis, Ganesan Ramalingam, Manuel Costa,

Derek Gordon Murray, Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage Collection from Big Data
Systems. In 15th Workshop on Hot Topics in Operating Systems, HotOS XV, Kartause Ittingen, Switzerland, May 18-20, 2015.
USENIX Association. https://www.usenix.org/conference/hotos15/workshop-program/presentation/gog

H. Grgic, Branko Mihaljevic, and Aleksander Radovan. 2018a. Comparison of garbage collectors in Java programming
language. In 41st International Convention on Information and Communication Technology, Electronics and Microelectronics,

MIPRO 2018, Opatija, Croatia, May 21-25, 2018, Karolj Skala, Marko Koricic, Tihana Galinac Grbac, Marina Cicin-Sain,
Vlado Sruk, Slobodan Ribaric, Stjepan Gros, Boris Vrdoljak, Mladen Mauher, Edvard Tijan, Predrag Pale, and Matej Janjic
(Eds.). IEEE, 1539–1544. https://doi.org/10.23919/MIPRO.2018.8400277

H. Grgic, B. Mihaljević, and A. Radovan. 2018b. Comparison of garbage collectors in Java programming language. In
2018 41st International Convention on Information and Communication Tec logy, Electronics and Microelectronics (MIPRO).
1539–1544. https://doi.org/10.23919/MIPRO.2018.8400277

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and Strength-
ening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
Rocco A. Servedio and Ronitt Rubinfeld (Eds.). ACM, 21–30. https://doi.org/10.1145/2746539.2746609

Martin Hirzel, Amer Diwan, and Matthew Hertz. 2003. Connectivity-based garbage collection. In Proceedings of the 2003 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications, OOPSLA 2003, October 26-30,

2003, Anaheim, CA, USA, Ron Crocker and Guy L. Steele Jr. (Eds.). ACM, 359–373. https://doi.org/10.1145/949305.949337
Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic deterministic fully-dynamic algorithms

for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.
Claire Huang, Stephen M. Blackburn, and Zixian Cai. 2023. Improving Garbage Collection Observability with Performance

Tracing. In Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and

Runtimes, MPLR 2023, Cascais, Portugal, 22 October 2023, Rodrigo Bruno and Eliot Moss (Eds.). ACM, 85–99. https:
//doi.org/10.1145/3617651.3622986

Roberto Ierusalimschy. [n. d.]. Garbage Collection in Lua. https://www.lua.org/wshop18/Ierusalimschy.pdf.
Richard E. Jones, Antony L. Hosking, and J. Eliot B. Moss. 2011. The Garbage Collection Handbook: The art of automatic

memory management. CRC Press. http://gchandbook.org/
Henry G. Baker Jr. 1978. List Processing in Real Time on a Serial Computer. Commun. ACM 21, 4 (1978), 280–294.

https://doi.org/10.1145/359460.359470
Jeehoon Kang and Jaehwang Jung. 2020. A marriage of pointer- and epoch-based reclamation. In Proceedings of the 41st

ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 314–328. https://doi.org/10.1145/3385412.3385978
Bruce M. Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph connectivity in polylogarithmic worst case time.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,

Louisiana, USA, January 6-8, 2013, Sanjeev Khanna (Ed.). SIAM, 1131–1142. https://doi.org/10.1137/1.9781611973105.81
Hongjune Kim, Seonmyeong Bak, and Jaejin Lee. 2014. Lightweight and block-level concurrent sweeping for javascript

garbage collection. In SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems 2014,

LCTES ’14, Edinburgh, United Kingdom - June 12 - 13, 2014, Youtao Zhang and Prasad Kulkarni (Eds.). ACM, 155–164.
https://doi.org/10.1145/2597809.2597824

Donald Ervin Knuth. 1997. The art of computer programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-Wesley.
https://www.worldcat.org/oclc/312910844

Kasper Green Larsen and Huacheng Yu. 2023. Super-Logarithmic Lower Bounds for Dynamic Graph Problems. In 64th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023. IEEE,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.

https://openjdk.org/jeps/421
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/321021.321022
https://tip.golang.org/doc/gc-guide
https://www.usenix.org/conference/hotos15/workshop-program/presentation/gog
https://doi.org/10.23919/MIPRO.2018.8400277
https://doi.org/10.23919/MIPRO.2018.8400277
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/949305.949337
https://doi.org/10.1145/3617651.3622986
https://doi.org/10.1145/3617651.3622986
https://www.lua.org/wshop18/Ierusalimschy.pdf
http://gchandbook.org/
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/2597809.2597824
https://www.worldcat.org/oclc/312910844


96:28 Matthew Sotoudeh

1589–1604. https://doi.org/10.1109/FOCS57990.2023.00096
Henry Lieberman and Carl Hewitt. 1983. A Real-Time Garbage Collector Based on the Lifetimes of Objects. Commun. ACM

26, 6 (1983), 419–429. https://doi.org/10.1145/358141.358147
Rafael Dueire Lins. 1992. Cyclic Reference Counting with Lazy Mark-Scan. Inf. Process. Lett. 44, 4 (1992), 215–220.

https://doi.org/10.1016/0020-0190(92)90088-D
Feng Mao, Eddy Z. Zhang, and Xipeng Shen. 2009. Influence of program inputs on the selection of garbage collectors. In

Proceedings of the 5th International Conference on Virtual Execution Environments, VEE 2009, Washington, DC, USA, March

11-13, 2009. ACM, 91–100. https://doi.org/10.1145/1508293.1508307
Peter Marshall. [n. d.]. Trash talk: the Orinoco garbage collector. https://v8.dev/blog/trash-talk.
Alejandro D. Martínez, Rosita Wachenchauzer, and Rafael D. Lins. 1990. Cyclic reference counting with local mark-scan.

Inform. Process. Lett. 34, 1 (1990), 31–35. https://doi.org/10.1016/0020-0190(90)90226-N
J. Harold McBeth. 1963. Letters to the editor: on the reference counter method. Commun. ACM 6, 9 (1963), 575. https:

//doi.org/10.1145/367593.367649
John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I. Commun.

ACM 3, 4 (1960), 184–195. https://doi.org/10.1145/367177.367199
Marvin L Minsky. 1963. A LISP garbage collector algorithm using serial secondary storage. (1963).
Allen Newell and J. C. Shaw. 1957. Programming the logic theory machine. In Papers presented at the 1957 western joint

computer conference: Techniques for reliability, IRE-AIEE-ACM 1957 (Western), Los Angeles, California, USA, February 26-28,

1957, Morton M. Astrahan (Ed.). ACM, 230–240. https://doi.org/10.1145/1455567.1455606
Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian, and Onur Mutlu. 2016. Yak: A

High-Performance Big-Data-Friendly Garbage Collector. In 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX
Association, 349–365. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen

Oracle. [n. d.]. Java Garbage Collection Basics. https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/
index.html.

Mihai Pǎtraşcu and Erik D. Demaine. 2004. Lower bounds for dynamic connectivity. In Proceedings of the 36th Annual

ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, László Babai (Ed.). ACM, 546–553. https:
//doi.org/10.1145/1007352.1007435

EJH Pepels, MCJD van Eekelen, and Marinus Jacobus Plasmeijer. 1988. A cyclic reference counting algorithm and its proof.
Department of Theoretical Computer Science and Computational Models, Faculty . . . .

Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. 2009. Precise garbage collection for C. In Proceedings of the 8th

International Symposium on Memory Management, ISMM 2009, Dublin, Ireland, June 19-20, 2009, Hillel Kolodner and Guy
L. Steele Jr. (Eds.). ACM, 39–48. https://doi.org/10.1145/1542431.1542438

Pablo Galindo Salgado and Irit Katriel. [n. d.]. Garbage collector design. https://github.com/python/cpython/blob/main/
InternalDocs/garbage_collector.md.

J.D. Salkild. 1985. Implementation and analysis of two cyclic reference counting algorithms.
Kunal Sareen and Stephen Michael Blackburn. 2022. Better Understanding the Costs and Benefits of Automatic Memory

Management. In Proceedings of the 19th International Conference on Managed Programming Languages and Runtimes,

MPLR 2022, Brussels, Belgium, September 14-15, 2022, Elisa Gonzalez Boix and Tobias Wrigstad (Eds.). ACM, 29–44.
https://doi.org/10.1145/3546918.3546926

Matthew Sotoudeh. 2025. (Artifact) Pathological Cases for a Class of Reachability-Based Garbage Collectors. https://doi.org/
10.5281/zenodo.14942312

Robert Endre Tarjan and Uzi Vishkin. 1984. Finding Biconnected Components and Computing Tree Functions in Logarithmic
Parallel Time (Extended Summary). In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach,

Florida, USA, 24-26 October 1984. IEEE Computer Society, 12–20. https://doi.org/10.1109/SFCS.1984.715896
Bill Venners. 1998. Object Finalization and Cleanup How to Design Classes for Proper Object Cleanup. https://www.artima.

com/articles/object-finalization-and-cleanup.
JosephWeizenbaum. 1962. Knotted list structures. Commun. ACM 5, 3 (1962), 161–165. https://doi.org/10.1145/366862.366897
Joseph Weizenbaum. 1964. More on the reference counter method of erasing list structures. Commun. ACM 7, 1 (1964), 38.

https://doi.org/10.1145/363872.363881
Joseph Weizenbaum. 1969. Recovery of reentrant list structures in SLIP. Commun. ACM 12, 7 (1969), 370–372. https:

//doi.org/10.1145/363156.363159
Josh Wolfe. 2017. Why Zig When There is Already C++, D, and Rust? https://ziglang.org/learn/why_zig_rust_d_cpp/#no-

hidden-allocations
Andrew Chi-Chih Yao. 1978. Should Tables Be Sorted? (Extended Abstract). In 19th Annual Symposium on Foundations of

Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978. IEEE Computer Society, 22–27. https://doi.org/10.1109/
SFCS.1978.33

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 96. Publication date: April 2025.

https://doi.org/10.1109/FOCS57990.2023.00096
https://doi.org/10.1145/358141.358147
https://doi.org/10.1016/0020-0190(92)90088-D
https://doi.org/10.1145/1508293.1508307
https://v8.dev/blog/trash-talk
https://doi.org/10.1016/0020-0190(90)90226-N
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/1455567.1455606
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://doi.org/10.1145/1007352.1007435
https://doi.org/10.1145/1007352.1007435
https://doi.org/10.1145/1542431.1542438
https://github.com/python/cpython/blob/main/InternalDocs/garbage_collector.md
https://github.com/python/cpython/blob/main/InternalDocs/garbage_collector.md
https://doi.org/10.1145/3546918.3546926
https://doi.org/10.5281/zenodo.14942312
https://doi.org/10.5281/zenodo.14942312
https://doi.org/10.1109/SFCS.1984.715896
https://www.artima.com/articles/object-finalization-and-cleanup
https://www.artima.com/articles/object-finalization-and-cleanup
https://doi.org/10.1145/366862.366897
https://doi.org/10.1145/363872.363881
https://doi.org/10.1145/363156.363159
https://doi.org/10.1145/363156.363159
https://ziglang.org/learn/why_zig_rust_d_cpp/#no-hidden-allocations
https://ziglang.org/learn/why_zig_rust_d_cpp/#no-hidden-allocations
https://doi.org/10.1109/SFCS.1978.33
https://doi.org/10.1109/SFCS.1978.33

