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Chapter 1

Preamble and Syllabus

1.1 About These Notes

This document collects course materials from the Summer 2024 offering of Stanford CS 161: Design and
Analysis of Algorithms. Many different materials are included:

• The syllabus for the course.

• Daily lecture notes that I prepared for my lectures (these exclude handwritten figures that I prepared
for whiteboarding; if you’d like access to these, contact me).

• Post-lecture quiz questions (graded for completion) that spot-check student understanding of the con-
tent covered that day.

• Post-lecture notes that I posted after almost every lecture for students who were interested in learning
more about the material (we didn’t test on any of these post-lecture notes).

• Homework assignments.

• Study guides we posted for each of the three midterm exams.

• An appendix containing material we didn’t give to the students, but would if we taught the class again.
Currently this consists of a crash-course defining the logarithm and a number of important facts (such
as the asymptotic value of Hn and the limit of

(
n−1
n

)n
) that showed up more frequently in the course

than I originally expected them to. Notably, most of these facts can be proved in a surprisingly rigorous
way even without the explicit use of calculus, if the proper definition of the logarithm is used.

• C source code for almost all of the algorithms described in this class is available at the following link:
https://lair.masot.net/git/161-code.git/. (This code is designed to follow the pseudocode as
closely as possible; these should not be used as reference production implementations.)

1.2 Copyright

Copyright in this content is owned by Matthew Sotoudeh. Please email me if you would like to use these
notes; I’m friendly and will usually agree happily!

1.3 About Textbooks

These notes are not intended to replace a textbook, but they are sufficient for a reasonably complete intro-
duction to algorithms. One major benefit of lecture notes as a supplement to a textbook is the selection of
topics, in addition to homeworks (many of the homework questions are new).

5
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There is a discussion of relevant textbooks in the syllabus, which tries to give a balanced view on their
pros and cons. But, after teaching this course, you should know the following fact: Sedgewick and Wayne
is the best introductory algorithms textbook. CLRS has more breadth, but the explanations and
motivations for the algorithms in CLRS are nowhere near the quality of SW. Knuth was invaluable to me in
preparing these lecture notes, but proved itself basically unreadable for most of our introductory algorithms
students. Erickson has far too sparse coverage (especially a complete lack of search data structures).

1.4 Idiosyncrasies and Mistakes

I tried to keep the lecture content accurate and use standard terminology in the field. While I think we
mostly succeeded in these two goals (especially thanks to some very adept bug-finders in the class!), there
were some choices that we insisted on that may break from standard algorithm classes and terminology:

• I tried to consistently differentiate between “average-case time” (expected value over a random distri-
bution of inputs to the algorithm) and “expected time” (expected value over a random distribution of
choices made by the algorithm, e.g., pivot or hash function). This confused the students, and I don’t
think it’s as standard a distinction as I originally thought it was.

• Following the literature, CLRS gives multiple definitions for ‘amortized time’ (e.g., ‘aggregate time’ vs.
‘operation time plus change in potential’). We standardized on one definition (the ‘aggregate time’)
and treat the potential method as a lemma that helps you prove things about the aggregate time.

• We don’t teach the master theorem, as it’s neither insightful (vs. the recurrence tree method) nor
useful at all for most of the truly interesting recurrences we reason about in this course (e.g., quicksort
expected time or average-case BST insertion).

• Regarding dynamic programming, we heavily focus on the top-down approach (although the bottom-up
approach is discussed briefly).

• We tried to make a distinction between “black-box” and “white-box” worst-case times for, e.g., hash
tables. I’m not sure the terminology we landed on was very standard, and it didn’t seem to help the
students.

1.5 Contacting Me

I am certain that the notes have many mistakes, both big and small. If you find mistakes in these notes, I
would appreciate a short email (matthew@masot.net) so I can correct them.

Many of the homework questions have extended hints available, but we did not provide them in these
collected notes. Most students found the questions were only approachable with the hints. If you would like
a hint for any question, I’m happy to engage in (brief) email discussions about any of the problems — please
start by sending me what you’ve tried so far.

1.6 Acknowledgements

Thanks to many students in 161 for helping to debug these notes! Happy to add your names here if you
reach out, but I’ve kept it anonymous out of privacy concerns until then.
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1.7 Syllabus

Course Logistics

Lectures: MWF 10:30 AM – 12:15 PM, Skilling Auditorium
Prerequisites: 106B or 106X; 103 or 103B; 109 or STATS 116
Website: https://cs161.stanford.edu

Discussion Forum: [closed]
Office Hours: Link to calendar on website
Instructor: Matthew Sotoudeh, Gates 478 (extra OHs by appointment—email me!)
Email: sotoudeh@stanford.edu
Course Assistants: Havin Hosgur, Nolan Miranda (he/him/his), Anjiang Wei

About the Course

Informally, an algorithm is a precise description of a method to accomplish a particular goal. In this class,
we will ask (and answer!) “what is the best way to accomplish X?” for many different goals X. I love the
study of algorithms because it is a unique blend of practically useful, theoretically insightful, and fun! I hope
by the end of this quarter you’ll agree.

My learning goals for you after taking this course include:

• Speak the lingo: be able to converse comfortably with other computer scientists about “table stakes”
concepts such as Dijkstra’s algorithm, balanced trees, and quicksort.

• Predict behavior: given an algorithm and a setting, be able to analyze the algorithm’s best, average,
expected, and worst-case performance characteristics.

• Solve problems: given a problem and setting, be able to design and implement an algorithm to solve
that problem efficiently and effectively.

• Communicate your thoughts: convince others of the efficiency and efficacy of algorithms.

Many of these can be summarized: “Think critically about what the best tool for the job is, and communicate
those thoughts to others.”

Textbooks

This course does not have a required textbook, but there are a number of very good algorithms textbooks
available. These include:

• Robert Sedgewick and Kevin Wayne; Algorithms (SW)

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein; Algorithms (CLRS)

• Donald E. Knuth; The Art of Computer Programming (TAOCP)

• Jeff Erickson; Algorithms (JE)

I suggest you purchase at least one of them and use it as a reference throughout the course. If you are new
to algorithms and programming, I would suggest either CLRS or SW. If you already know what mergesort
and red-black trees are, I would suggest picking up volume 3 (and maybe 1) of TAOCP. CLRS and TAOCP
are available for free online from Stanford Libraries. JE is available for free online from the author. All four
books have been placed on course reserves at the Terman Engineering Library.

https://cs161.stanford.edu
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Homeworks

Homework problems will be handed out after each Monday lecture and uploaded to Canvas. By 11:59 PM
Pacific time on the Tuesday of the following week, you must turn in a LaTeX-generated document with the
following contents:

1. How did lecture go for you this week (too fast, too slow)? How did you watch lectures (in-person, 2x
video, etc.)? What topics did you feel confident in, and which did you feel you need more practice
with?

2. How did the homework go for you this week? Which problems were harder vs. easier?

3. At least three written-up answers to homework questions that you want our feedback on (doesn’t have
to be correct, or complete). The homework problems will be grouped by lecture and you must submit
an attempt for at least one question relating to each lecture (hence, at least 3 problems).

As long as you make an earnest attempt at the homework and turn in this weekly update document,
you will get 100% on the homework portion of the grade. If you feel super confident in the material and
don’t want to spend too much time on the homeworks, we’re giving you that flexibility. But beware! It is
very easy to overestimate your familiarity with the material, and homeworks are your best opportunity to
calibrate your understanding with our expectations before the exams. So I strongly suggest spending lots of
time on the homework, both for your own learning and so that you can get feedback from us to better align
your expectations with ours.

Exams

We will have 3 quizzes and one final. The quizzes will focus on material from the preceeding two weeks,
but everything covered so far in the class is fair game. The quizzes will be long, around 10 questions, with
the goal of reducing the impact of any one question on your overall grade. The final exam is cumulative.
Non-SCPD students must take the exams (including quizzes) in-person.

Grading

The breakdown is shown below. We will never curve grades down; if you get a 93% according to the below
breakdown, you will get an A in the course. However, we will happily curve grades up, e.g., if the class
average is low.

Homework: 15%
Quizzes (3 × 20% each): 60%
Final: 25%
Lecture Participation: (free points on the next quiz/exam score)

Total: 100%

‘Lecture participation’ includes a practice quiz question given and turned in at the end of most lectures.
It will not be graded for correctness, but we will provide solutions. The dual goals for these practice questions
are (i) to give us some insight into how comfortable people were with the material that day, and (ii) to give
you some calibration for how well you understood the material. Students who regularly participate in these
practice quizzes will get a few free points on the next ‘real’ exam (quiz or final). This is partially meant
to incentivize in-person attendance; non-SCPD students must turn it in in-person and SCPD students must
submit it to Gradescope at the end of class to get the points.

Course Policies, Expectations, and Guidelines

• Auditors are welcome at lectures, but due to the very limited course staff please understand that we
cannot take OH or grading time away from enrolled students.
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• SCPD students are welcome and encouraged to attend anything they want (lectures, OHs, quizzes,
final exam) in person.

• If you must use a laptop or other electronic device during lecture, please consider sitting towards the
back of the lecture hall so it does not distract those behind you.

• Please, please, please ask questions! This is a class of over 100 people and the lecture notes are brand
new. If you are confused about something, I guarantee that many others are as well. I understand
that many students are concerned about slowing down lecture too much. Don’t be: keeping lecture
on track is my job. If we don’t have time to answer your question on-the-spot, I will let you know,
continue lecturing, and post the answer on Ed afterwards.

• Regrade requests are for when the grader made a factually incorrect comment, not for
when you disagree with the amount of partial credit given to a wrong answer. Regrade
requests will be open for a period of one week after each assignment; no regrade requests will be
accepted after that window closes. If you disagree with a regrade decision, you may bring it to me
during OHs and I will regrade the entire assignment with you (possibly lowering the overall score).

Office Hours

You are encouraged to come to office hours for any questions about the course material (and beyond!). An
office hour calendar will be posted on the website. We will use QueueStatus to manage the office hours
queue: https://queuestatus.com/queues/2775 so please sign in there when you arrive.

Honor Code

The Stanford Honor Code and CS Honor Code apply to this class. For the homeworks you may use any
resource you like (including other students), although rules about plagiarism still apply (you must properly
cite sources used). For the exams, no assistance is permitted (including other people, websites, notes,
chatbots) unless explicitly approved by the instructor. If you have a question about these policies, please
contact the instructor.

SCPD Recording Notice

Video cameras located in the back of the room will capture the instructor presentations in this course. For
your convenience, you can access these recordings by logging into the course Canvas site. These recordings
might be reused in other Stanford courses, viewed by other Stanford students, faculty, or staff, or used for
other education and research purposes. Note that while the cameras are positioned with the intention of
recording only the instructor, occasionally a part of your image or voice might be incidentally captured. If
you have questions, please contact a member of the teaching team.

Access and Accommodations

Stanford is committed to providing equal educational opportunities for disabled students. Disabled students
are a valued and essential part of the Stanford community. We welcome you to our class.

If you experience disability, please register with the Office of Accessible Education (OAE). Professional
staff will evaluate your needs, support appropriate and reasonable accommodations, and prepare an Academic
Accommodation Letter for faculty. To get started, or to re-initiate services, please visit oae.stanford.edu.

If you already have an Academic Accommodation Letter, we invite you to share your letter with us.
Academic Accommodation Letters must be shared at the earliest possible opportunity so we may partner
with you and OAE to identify any barriers to access and inclusion that might be encountered in your
experience of this course.

https://queuestatus.com/queues/2775
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Tentative Course Schedule

Quiz dates on the below calendar are fixed, but we may adjust the topics covered on other days as we go
along.

Day Topic(s) and/or deadlines

M, June 24st Introduction to CS 161. Analysis of selection sort. Example of correctness proofs and best+worst
case time analyses.

W, June 26th Big-O, insertion sort, and average case analysis.

F, June 28th Divide-and-conquer and merge sort. Examples of analyzing recurrences.

M, July 1st Quicksort and quickselect. Examples of expected time analysis.

T, July 2nd (Week 1 Homework Due)

W, July 3rd Heaps and heapsort.

F, July 5th Comparison sorting lower bounds.
New problems: dynamic sorting and search. Then, BSTs and the fundamental BST operations:
best, average, and worst-case analysis.

M, July 8th Quiz 1: Sorting

T, July 9th (Week 2 Homework Due)

W, July 10th AVL trees: analysis and insertion.

F, July 12th 2–3 trees and red–black trees: analysis and insertion.

M, July 15th Amortized analysis: aggregate analysis, the potential method, and dynamic arrays

T, July 16th (Week 3 Homework Due)

W, July 17th Splay trees and union-find (algorithms in class, some analyses on homework)

F, July 19th Start hashing.

M, July 22nd Hash maps: handling collisions.

T, July 23rd (Week 4 Homework Due)

W, July 24th Review Session

F, July 26th Quiz 2: Searching (trees and hashing)

M, July 29th Graphs, graph representations, and graph parameters (e.g., directedness, sparsity, acyclicity).
Graph reachability: DFS and BFS. Connected components on static, undirected graphs. Topo-
logical sort.

T, July 30th (Week 5 Homework Due)

W, July 31st Shortest paths: Dijkstra, Bellman-Ford, Floyd-Warshall. Dynamic programming: fibonacci.

F, August 2nd Spanning trees: Prim and Kruskal. Discussion of greedy algorithms more generally.

M, August 5th Max flow/min cut

T, August 6th (Week 6 Homework Due)

W, August 7th More examples of dynamic programming and greedy algorithms. Hopefully knapsack, independent
set, Floyd-Warshall in more detail, etc.

F, August 9th Quiz 3: Graphs

M, August 12th Other things you should know exist, but we will not test on the final: (subset of?) linear program-
ming, smoothed analysis, MILP, multiplication algorithms (numbers/matrices/polynomials), FFT,
CDCL, local search, string matching, primality testing, prime number generators, stable marriage,
A∗, optimizing submodular functions.

T, August 13th (Week 7 Homework Due)

W, August 14th Review for Final Exam

Sa, August 17 Final Exam



Chapter 2

Sorting

2.1 Lecture 6/24 Notes

2.1.1 Short Intro

Definition 1. “Algorithm” (informally): a precise description of a method to solve a particular problem.

Examples of algorithms:

• When I ask Axess to sort my list of students by name, it uses some particular algorithm under the
hood to do that.

• Your computer’s operating system has an algorithm (the “scheduler”) to determine which program
will get the nice slice of CPU time.

• Google Maps has an algorithm to determine the best way to get from my apartment to McDonald’s.

(Underline the problem in each one.)
This class will focus on the study of algorithms: given a problem, think about many different algorithms

for solving it and try to determine which is best (or what the different tradeoffs are). If you think about it,
this is basically the core of computer science!

Algorithms is a unique blend of

1. Practical: using the right algorithm can save you tons of money and time

2. Philosophical: tells us something about the world that one approach is truly better than another

About to dive in; a few things to touch on before we do so:

• Cadence of the class is generally very predictable: we’ll introduce a problem, then we’ll introduce
an algorithm meant to solve the problem, then we’ll spend time analyzing how good it is. Problem,
solution, analysis. Problem, solution, analysis.

• Please, please, please ask questions! Keeping the lecture on pace is my responsibility, not yours. In
return, I just ask that you be OK with me responding to some questions with a “let’s talk offline”
or “I’ll post an extended answer to Ed.” Not looking for “smart” questions, or insightful answers
to think-pair-shares, etc. — just looking for engagement. Some bonus points for folks who engage,
especially with the think-pair-shares. (Insert “Question Asking” between each of the three lecture
steps above!)

2.1.2 Problem of the week: sorting!

Definition 2. Given a list of objects, and some way to compare them, the sorting problem is to rearrange
the objects so they are in ascending order.

11
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Examples:

• Numbers: simplest is sorting a list of numbers; 11, 100, 60, 70 becomes 11, 60, 70, 100.

• Words: sort lexicographically, like you’re making a dictionary (“work, word, worm” becomes “word,
work, worm”)

• Can also sort rows in a table; Excel does this. E.g., students where the comparison compares grade.
Note here it’s a bit tricky: we’re sorting the rows, but the comparison only takes into account grade.

• Can sort search results by how close they are to the user’s query.

Big point: many different meanings to “comparison”, not all of which are numeric! For the first set of
sorting algorithms we see, the only thing we need is that there’s some way to ‘compare’ two elements, i.e.,
ask which is smaller. E.g., the user of our sorting algorithm must provide a way to test whether “word ¡
work”.

But if it helps, for now you can just assume we’re always sorting numbers.
We’re also being a bit vague about how the objects are stored: linked list? array? ?? For now, assume

everything is stored in an array.

Why do we care about sorting?

At least three reasons:

• Practical: sorting is incredibly important in modern computer systems:

Project Rough underapprox of sort calls

Pytorch 607
VSCode 764
LibreOffice (basically Office/Drive) 434
Chrome 1037

• Historical (https://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.
html): In 1888 the Census bureau held a competition to see who could create a machine to process
and sort their records the fastest. Herman Hollerith invented a machine based on punchcards and won:
data that took other contests over 40 hours to sort took his machine just over 5 hours! His punchcard
machine was one of the earliest ancestors of modern computers, and Hollerith later went on to create
the predecessor of IBM.

Ever since, sorting has been a core problem to computing machines; in fact, one of the first programs
to be written for the first stored-program computer was a sorting routine!

So studying sorting algorithms puts you ‘in touch’ with the core of our field.

• Pedagogical: sorting is a good example problem. There are many different algorithms with very
different tradeoffs. The techniques needed to analyzing sorting algorithms will be useful for all the
other algorithms we see in this class.

Think-Pair-Share

Now that we understand the goal, let’s try to develop some sorting algorithms. Introduce yourself to your
neighbor then try to come up with the simplest way you can to sort these five toys(?) by height(?). Note
we’re looking for a general procedure, that will work in many different scenarios not just this example one.
So “move the red one to the end” isn’t general enough; you’ll have to say why you chose the red one to move.

Pull it back together, ask for ideas, record them on the board and try to link them to ‘real’ algorithms.
Give praise to each one, e.g., selection sort (depending on the approach) leads to one of the best algos.

Maybe ask folks to guess which they think would be fastest? Point out it’s not obvious, and implementing
them is probably not super easy either.

https://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html
https://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html
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Selection Sort

The first we’ll study in detail is selection sort. Why? It is (to me) the most natural! And has some fun and
pedagogically instructive problems that show up in its analysis.

If we were to write up the steps, it looks like:

1. Find the smallest element

2. Move it to the front

3. Repeat among the remaining items until none left

Example: with the physical objects.
And in more explicit pseudocode:

1 def selection_sort(A):

2 i = 0

3 while i < N: # 0, 1, ..., N-1

4 # find the min among [i, N)

5 m = i

6 j = i + 1

7 while j < N: # i+1, i+2, ..., N-1

8 if A[m] > A[j]:

9 m = j

10 j = j + 1

11 # swap it with A[i]

12 swap A[i] <-> A[m]

13 # continue on to the next element

14 i = i + 1

15 return A

Example: with A = [17, 15, 9].
Talk briefly about how they might have invented this algorithm; one of the key ideas is “get one step

closer to your goal on every iteration.”

Analyzing Algorithms Now that we have an algorithm, we need to analyze it. What does that mean?
It means asking and answering questions about its behavior!

There are at least two questions we can essentially always ask:

1. Is it correct?

2. Is it efficient?

There are many reasonable ways you could go about answering these questions. We usually think of two
big attack directions:

1. The empirical approach: implement and test the proposed algorithm. See if it seems to work and
seems to be fast.

2. The analytical approach: write a rigorous mathematical proof that the algorithm is correct, or meets
some efficiency guarantee, etc.

Think-pair-share: where have you seen these two approaches in your prior coursework? What are some
arguments for or against each one?

Example arguments:

• For empirical: might be easier. can run on real data, which might change the results. can run on the
real machine, which has very difficult/intricate performance interactions.
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• For analytical: could actually be easier for more complicated algorithms! can analyze corner case
behavior that would only show up once pushed to prod for empirical approach.

Critical to have both tools in your toolbox, this class focuses only on the analytical approach because
that’s essentially the point of this class in the curriculum at Stanford (many other classes teach you how to
use the empirical approach!).

The P Word The analytical method goes hand-in-hand with proofs. Just a rigorous argument that would
be convincing to a skeptical reader. Some English essay-like subjectivity in grading. Sticking to the PWC is
a good idea but not necessary for this class; think of it like the 5-para essay form.

Analyzing Selection Sort: Correctness Let’s look at the first question: is selection sort correct, i.e.,
does it return a sorted version of the input list?

The answer is yes (unless I’ve made a typo!) but we need to explain why to a skeptical reader!

There are many different ways to prove algorithm correctness, but one is far-and-away the standard:
inductive loop invariants. This is the standard we expect of rigorous correctness proofs in this class (though
we won’t ask for them too often: most commonly we’ll ask you to break algorithms).

Two Rules of Correctness Proofs (in this class):

1. Your reader can understand and reason through the behavior of finitely sequences of basic operations
on their own . . .

2. But they cannot reason through the behavior of loops without your help.

That help should come in the form of a loop invariant, which we’ll discuss next.

A loop invariant is just a statement that is true every time the loop condition is checked, and can be
proved via induction on the number of loop iterations. The point of a loop invariant is to “summarize” the
important behavior of the loop for the reader into one single claim. Key is that the reader only ever needs
to reason about a single loop iteration at a time.

Theorem 1. Selection sort correctly sorts any array (of numbers.)

Proof. We have two loops, so we need two loop invariants.

Claim: every time the inner loop’s condition is checked, m has the index of the minimal element among
Ai, . . . , Aj−1.

Proof by induction (have better diagrams in the handdrawn notes):

1. When the condition is first checked, we have m = i, j = i + 1 so the claim corresponds to Ai being
minimal among Ai, . . . , Ai, which is always true.

2. For the inductive case, we assume it’s true at some point during execution, then need to show it’s still
true after one more loop iteration. Let i, j,m,A be the values of those variables right at the start of
the iteration, and i′, j′,m′, A′ the values after the iteration. Notice i′ = i, A′ = A, j′ = j + 1. The IH
tells us m is minimal among Ai, . . . , Aj−1. We must show that, after one more loop iteration, m′ is
minimal among A′

i′ , . . . , A
′
j′−1, or in other words, m′ is minimal among Ai, . . . , Aj .. During the loop

iteration, exactly one of two things could happen:

• If Am > Aj , then we set m′ = j.

• Otherwise, we must have Am ≤ Aj and so we set m′ = m.

In the first case, Am′ = Aj is smaller than Am, which was (by IH) the smallest among Ai, . . . , Aj−1.
Hence, Am′ is the smallest among Ai, . . . , Aj−1, Aj , as desired.

In the second case, Am′ = Am is smaller than Aj , and by IH is smaller than everything else in
Ai, . . . , Aj−1, hence Am′ is smallest among Ai, . . . , Aj , as desired.
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(Notice after the very last iteration this implies when the loop ends it is minimal among i, . . . , N − 1.
So, now the reader can ignore all the details of the inner loop and just summarize it as “the loop makes m
the minimal element among i, . . . , N − 1.”)

Claim: any time the loop condition on line 3 is checked, the indices 0, 1, . . . , i− 1 contain the smallest i
elements in sorted order.

Proof by induction (better pictures in handdrawn notes):

1. Vacuously true for the first time it’s reached.

2. At the start of the loop we know A0, A1, . . . , Ai−1 are the smallest i sorted; we need to check what
happens after one more iteration. Well, we found the smallest thing among the remaining items
(everything except for the i smallest), so it must be the i′ = (i+1)th smallest element in A. We placed
that in slot A′

i. Hence, now the i′ smallest elements are in their proper places A′
0, . . . , A

′
i′−1.

(So now consider what happens when the outer loop ends: guarantees 0, 1, . . . , N − 1 are sorted!)
(Note this is actually nto quite enough; we need to also argue that the resulting list is ‘just’ a rearrange-

ment of the original list, i.e., we didn’t just overwrite the whole thing with new, unrelated values. But this
can be seen because the only operation we ever do to A is swapping values, hence the list always remains
just a rearrangement of the original.)

Take a step back to let the loop invariant/loop summary process sink in. It’s a bit formal and tiring. We
won’t spend much time in lecture doing this, but we do want you to practice it. Key point is to be able to
summarize for the reader the critical behavior of each loop in one statement.

Analyzing Selection Sort: Efficiency Efficiency is something we’ll spend a lot more time thinking
about in lectures.

The first question you often want to answer about efficiency is: how much time does this program take?
It’s impossible to answer this question without knowing the machine it will be run on and the inputs it will
be run on. For now, as a rough estimate, we’ll analyze the algorithm assuming every time a line is executed
it costs 1 unit of time. We’ll also look at the behavior on the best possible input, the worst possible input,
and average (randomly chosen) inputs.

In theory, you can also use loop invariants to rigorously prove things about how much time a program
takes, but we’ll be a little less formal than that in this class.

The basic approach we’ll use is to look at each line and count up how many times it’s executed.
Think-pair-share: in terms of N , the length of the array, how many times total is each line of the

selection sort pseudocode executed? Try to fill in this table:

Line Count Count (Asymptotic)

2 1 Θ(1)
3 N + 1 Θ(N)
5 N Θ(N)
6 N Θ(N)
7 N + (N − 1) + · · ·+ 1 = 1

2N(N + 1) Θ(N2)
8 (N − 1) + (N − 2) + · · ·+ 1 = 1

2N(N − 1) Θ(N2)
9 0 ≤ T9 ≤ 1

2N(N − 1) O(N2)
10 1

2N(N − 1) Θ(N2)
12 N Θ(N)
14 N Θ(N)

Total (computed) 1.5N2 + 4.5N + 2 ≤ T ≤ 2N2 + 4N + 2 Θ(N2)

Line 9 is hard to get an exact count for: clearly it can’t be executed fewer than 0 times or more than
line 8 is.

So, without more analysis (we’ll do it on the HW!), we can only get a rough bound. But that rough
bound is pretty useful: it tells us that no matter what, we’re going to be performing on the order of n2

operations.
How much is that? Assuming each line takes 10−9 seconds to run. . .
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N Time to execute N2 lines at 109 lines per second

100 10−5 seconds
1,000 0.001 seconds
1,000,000 > 1000 seconds
3,000,000,000 (Facebook MAU) > 285 years

Hmm, not too great!

Side Quest on Asymptotic Notation Think-pair-share: what are some pros and cons of asymptotic
notation compared to the exact counting?

Some possibilities:

• Asymptotic analysis: it’s easier to work with, it makes it easier to compare algorithms based on what
happens for big inputs, and it reflects our uncertainty about the exact constant running time of each
line/operation.

• Exact analysis: often constant factors do matter, especially when comparing two algorithms with the
same asymptotics. on real computers constant factors matter a lot. even though we’re uncertain about
the constant running times of operations, hypothetically once we fix a machine we can integrate that
info into our analysis. Gives us more insight into how variable/unpredictable the running time is (i.e.,
difference between best and worst might be 10×, or it might be 1×).

In this class, and in real life, we’ll mostly use asymptotic notation. But it is still important to be able to
perform a more precise analysis when necessary. But you should probably expect it to be like 90%–10% in
favor of asymptotic analysis for this class.

2.1.3 Syllabus and Logistics

Pass out syllabi, talk through it. Do some roadmapping based on the calendar. Take some questions. Plan
for ≈15m.

2.1.4 Wrap Up for Today

So we’ve seen:

• Using loop invariants to explain why an algorithm is correct

• Best and worst case analysis of algorithm efficiency

Now, let’s go on to the practice quiz!

2.1.5 Post-Lecture Ed Notes

There were many interesting questions today, one of which was why Knuth uses ”go to”s throughout his
textbooks.

If you also found this question interesting, note that he writes at length about ’go to’ in the follow-
ing paper: https://dl.acm.org/doi/pdf/10.1145/356635.356640 and specifically about the use in his
textbooks on page 272 (PDF page 12), section title ”A Confession.”

Enjoy!

https://dl.acm.org/doi/pdf/10.1145/356635.356640
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2.1.6 Lecture 6/24 Practice Quiz Question (Extra Credit for Completion)

Recall the selection sort pseudocode from lecture (note the line numbers may have changed!):

1 def selection_sort(A, N): # list A of length N

2 i = 0

3 while i < N: # 0, 1, ..., N-1

4 # find the min among [i, N)

5 m = i

6 j = i + 1

7 while j < N: # i+1, i+2, ..., N-1

8 if A[m] > A[j]:

9 m = j

10 j = j + 1

11 # swap it with A[i]

12 swap A[i] <-> A[m]

13 # continue on to the next element

14 i = i + 1

15 return A

For each of the following proposed modifications, answer with brief justification:

• Does the resulting algorithm still correctly sort?

• If so, describe how much running time the modification saves in terms of N , the size of the array.
Assume every line takes one unit of time every time it executes. A tight asymptotic answer (e.g., of
the form Θ(n)) is OK.

• If not, provide a small (at most 4 objects) example that it fails to sort correctly.

1. Change the loop condition on line 3 to i < N − 1

(a) Does it still sort?

(b) Time improvement or failing input:

Part (2) on back →
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2. Change the loop condition on line 3 to i < N − 2

(a) Does it still sort?

(b) Time improvement or failing input:
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2.2 Lecture 6/26 Notes

2.2.1 Big-O Bootcamp

Going to spend a few minutes at the start talking about what big-O is.
The most important thing to know is that big-O really has no direct relationship to programming, or to

algorithms. It’s just a convenient way of talking about upper and lower bounds on functions.
It turns out that we talk about upper and lower bounds on functions a lot when doing algorithms (namely,

where those functions are the running time of our programs). But the actual definition says nothing about
programming.

Definition 3. For any natural-valued function f(n) we can define the set of functions O(f(n)) like so:

O(f(n)) = {f0(n) | ∃Cf0 , Nf0 ,∀n ≥ Nf0 , 0 ≤ f0(n) ≤ Cf0f(n)}.

In words, O(f(n)) means “the set of functions that are eventually upper-bounded by a constant multiple
of f(n).” It turns out big-O notation is very good at capturing what we mean by things like “the dominant
term,” e.g., we get results like n2 + 2n+ 5 ∈ O(n2). This is the sort of thing you want to play around with
the definition a lot to let it sink in.

But with this definition, you might be thinking, then the sort of stuff we wrote last week like:

n+ 1 = O(n)

really makes no sense at all! And you would be right. But it’s what computer scientists do anyways.
In particular, we have the following:

Convention 1. When we have an equation with asymptotic notation on either (or both) sides of the equals
sign, we mean the following: if every asymptotic set on the left hand side is replaced by any of its members,
then there exists a member of each asymptotic set on the right-hand side that can replace it and make the
equation true.

Hence, for example,

O(f(n)) +O(g(n)) + h(n) = O(k(n))

means, for any choice of f0(n) ∈ O(f(n)) and for any choice of g0(n) ∈ O(g(n)) there exists a choice of
k0(n) ∈ O(k(n)) such that

f0(n) + g0(n) + h(n) = k0(n).

Definitions for the related notions of Ω, Θ, ω, and o are available in the textbook. For this class, I think
we’ll only need O, Ω, and Θ; you don’t need to learn the remaining ones. Informally, you can think of the
following analogies:

1. f0(n) = O(f(n)) is like f0(n) ≤ f(n),

2. f0(n) = Ω(f(n)) is like f0(n) ≥ f(n), and

3. f0(n) = Θ(f(n)) is like f0(n) = f(n),

but of course, like most analogies, it’s not precisely accurate.

2.2.2 Recall Selection Sort

Selection sort:

1. Find smallest

2. Swap it with index 0

3. Repeat among the remaining items
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It was pretty slow: Θ(n2) regardless of the input.
Remember in this class we always want to ask: is it possible to do better??
Today we’ll see the answer is yes!
In fact we’ll see our first two “beautiful” algorithms: insertion sort and merge sort. Insertion sort will

be beautiful because of how well it adapts to and makes use of the already sortedness of some arrays, while
merge sort will be beautiful because of how well it does regardless of how well sorted the array starts out!

Insertion Sort

How many have played a card game in their life?
Insertion sort is known as the playing card sort, because it’s how card players often sort their hands.
Let’s demo it: as you pull each card from the deck, you look for its proper place and insert it there.
In pseudocode:

1 def insertion_sort(A, N):

2 i = 0

3 while i < N:

4 j = i

5 while j > 0 and A[j] < A[j-1]:

6 swap A[j] <-> A[j-1]

7 j = j - 1

8 i = i + 1

9 return A

Let’s walk through an execution on the list 5, 17, 1, 20.
Think-pair-share: Last week we saw that the final iteration of selection sort’s loop was not really

necessay. What about insert sort? Are any iterations unnecessary?

Analyzing Insertion Sort: Correctness

Theorem 2. Insertion sort properly sorts an array of numbers.

From here out we’ll only give the invariants, not the explicit inductive proofs.

Proof. The outer loop maintains the invariant that, every time line 3 is reached, the subarray A0, . . . , Ai−1

is sorted.
To prove this, you need the following invariant for the inner loop: every time line 5 is reached, the

following subarrays are all sorted (separately):

• A0, . . . , Aj−1, Aj+1, . . . , Ai, and

• Aj , . . . , Ai.

(You also need that it’s a rearrangement of the original items; here again that comes “for free” because
we only ever swap entries in the array.)

Analyzing Insertion Sort: Efficiency For selection sort, no matter what the input looked like it took
about n2 operations.

Let’s do an analysis to see if that’s true for insertion sort as well.

Line Number of Times Executed (Asymptotic)

2 Θ(1)
3, 4, 8 Θ(n)
5 Ω(n), O(n2)
6, 7 Ω(0), O(n2)

Total Ω(n), O(n2)
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Just like last week, we see that some of the lines seem to be hard to count without knowing more about
the input. Unlike last week, that actually makes a difference: our lower and upper bounds are very far away
from each other!

Note: so far, we have no way to tell whether our counting was just too loose (too many approximations)
or if the running time of the algorithm really does vary greatly depending on the exact input array used. So
let’s do a think-pair-share: Can you come up with any types of inputs where it takes O(n) time? What
about O(n2) time?

Hopefully folks find the following examples:

1. On 1, 2, . . . , n, it runs in Θ(n) time

2. On n, n− 1, . . . , 1, it runs in Θ(n2) time

So now we know for sure: the running time of this algorithm fluctuates between Θ(n) and Θ(n2) depending
on the exact input provided! This is an instance of a very common thing with algorithm analysis: the
efficiency of an algorithm often depends on the input you provide it with.

Leads to the theorem:

Theorem 3. The best-case time of insertion sort is Θ(n), the worst-case time of insertion sort is Θ(n2).

But neither of these is a very useful analysis; it could be that both the best and worst case are encountered
very infrequently. What we really want is an average case analysis.

Definition 4. The average case running time of an algorithm with respect to a distribution is the expected
value of the time it takes to run the algorithm on an input chosen the distribution.

In the context of sorting, we often consider the distribution of inputs to be all the n! permutations of
{0, 1, . . . , n−1} with each permutation having equal probability 1

n! . Another way to look at it in the context
of sorting is to ask what the average running time of the algorithm would be on a randomly shuffled list of
distinct items.

Theorem 4. The average running time of insertion sort on an input of n distinct items is Θ(n2).

Proof. (This theorem has a beautiful proof in terms of inversions that you’ll be able to reconstruct after
doing the homework, but for now let’s see a more direct proof.)

We know that every line is executed Θ(N) times except for the inner loop, so let’s analyze how many
times the inner loop iterates.

Every iteration of the inner loop moves the item that was originally at Ai one entry to the left until it
finds it proper sorted spot among the first i entries. But all orderings were equally possible, so this entry
has a 1

i+1 chance of getting place at any index 0, 1, 2, . . . , i. So the expected number of inner loop iterations
is:

1

i+ 1
(0 + 1 + 2 + · · ·+ i) =

i(i+ 1)

2(i+ 1)
=

1

2
i,

and so the total expected time spent on those lines is

n−1∑
i=0

1

2
i = Θ(n2).

Hence the total average case running time is

Θ(n) + Θ(n2) = Θ(n2).

Not so good! Though this is sort of to be expected for an algorithm that makes use of already sortedness:
random arrays are by definition very unsorted!

So how to we formalize the idea that it “takes advantage of the sortedness?” On the homework you’ll
see a characterization in terms of inversions, a very natural measure of how sorted or unsorted an array is.
Briefly: pick two items at random, and check if they’re out of order. The probability that this happens is
directly correlated to the running time of insertion sort (draw picture).
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Bigger Picture on Insertion Sort

Insertion sort is interesting for at least three reasons:

1. Performs very well when the list is already sorted, or near-sorted (the other algorithms we’ll see don’t
have this property!).

2. Requires extremely little code to implement

3. A simple (but hard to analyze!) modification makes it into Shell sort : instead of performing insertion
sort on the whole list, sort with a stride of 2k−1 for decreasing k. Lets entries ‘teleport’ further around
the list. Shell sort is surprisingly efficient, and still very easy to implement. Quote SW comment about
Shell sort.

Design Corner

Insertion sort is another great example of both being inspired by a “real-world” process (card sorting) and
a great example of the “make it a little better each time” design patterns.

2.2.3 Wrap Up

So we’ve seen:

• Insertion sort and average case analysis

• Merge sort and solving recurrences (pushed to F)

• Divide-and-conquer (pushed to F)

Now, let’s go on to the practice quiz!
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2.2.4 Lecture 6/26 Practice Quiz Question

Here is the insertion sort code from lecture:

1 def insertion_sort(A, N):

2 i = 0

3 while i < N:

4 j = i

5 while j > 0 and A[j] < A[j-1]:

6 swap A[j] <-> A[j-1]

7 j = j - 1

8 i = i + 1

9 return A

Problem 1: Define for each n the mountaintop list Mn = [1, 2, . . . , n − 2, n − 1, n, n − 1, n − 2, . . . , 1].
What is the asymptotic running time of insertion sort on the mountaintop list Mn? Justify your answer.
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2.3 Lecture 6/28 Notes

(Briefly mention Shell sort.)

2.3.1 Divide-and-Conquer

Today is our big “divide and conquer” day. So far, the algorithm design technique we’ve seen work for
selection and insertion sort is the “make it a little better each time” technique. Today, we’re going to see a
different approach that often gives very good algorithms (tho, the MIALBET approach will still be useful
in the algorithms we see today!). The new technique is called divide-and-conquer, and it goes hand-in-hand
with recursion.

In divide-and-conquer, you imagine someone gives you an input of size n and asks you to solve problem
X. But, crucially, you also imagine you have some magic box that solves problem X for all inputs strictly
smaller than n. So your goal is to some how turn your one big input of size n into a few smaller inputs of
size < n, stick them through the box, and then “stitch together” the solutions from those smaller problems
into a solution for the bigger problem. Of course, the magic box isn’t really magic: it just uses the same
technique recursively to reduce the problem more and more until you get to an easy-to-solve base case! In
other words, you should know how to implement the box for, say, < 1. And the MIALBET approach will
still be helpful in implementing the parts on either side of the box.

2.3.2 Merge Sort

We’ve seen:

• Selection sort is Θ(n2) on all inputs

• Insertion sort interpolates smoothly between Θ(n) on the best inputs and Θ(n2) on the worst.

Our dream “Algorithm X” would have Θ(n) on all inputs. Is this possible? Unfortunately not in full
generality; we’ll understand why next week. But until then, it is possible to get extremely close, namely,
Θ(n log n)! The first algorithm that we’ll see that reaches this bound is called merge sort.

Merge sort is a divide-and-conquer algorithm. It splits up the input in half, pushing both halves through
the magic box. Then it uses a special merge routine to merge the two halves together. So its basic form
looks like:

1. Sort the left half of the array

2. Sort the right half of the array

3. “Merge” the now-sorted left and right halves

These algorithms will be slightly more complicated because many of the recursive calls are working on
subarrays, not the entire array at once.

1 def merge_sort(A, l, h):

2 if (h - l) <= 1: return

3 m = l + (h - l)//2

4 merge_sort(A, l, m) # sort the left half of the list

5 merge_sort(A, m, h) # sort the right half of the list

6 merge(A, l, m, h) # merge the two halves together

7 return A

There are two “tricks” to this algorithm: first, the use of recursion. Second, the mysterious merge method
that we call.

What does it do? Given a list A where two adjacent regions are sorted, Merge will merge them into a
single fully sorted region.

How should we go about that? Do an example with cards! At each step, take the smallest card. But
only have to look at two.
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1 def merge(A, l, m, h):

2 # assume [l, m) sorted and [m, h) sorted

3 T = (scratch space of size >=N)

4 k, i, j = 0, l, m

5 while i < m and j < h:

6 if A[i] <= A[j]:

7 T[k++] = A[i++]

8 else:

9 T[k++] = A[j++]

10 while i < m:

11 T[k++] = A[i++]

12 while j < h:

13 T[k++] = A[j++]

14

15 i = 0

16 while i < h - l:

17 A[l + i] = T[i]

18 i = i + 1

2.3.3 Analysis of Merge

Theorem 5. Merge correctly merges two sorted lists.

Proof. The final loop copies T into A: one invariant is that Al, . . . , Al+i−1 are identical to T0, . . . , Ti−1.
All the other loops maintain the invariant:

1. T0, . . . , Tk−1 contain the entries Al, . . . , Ai−1 and Am, . . . , Aj−1 in sorted order, and

2. Every one of T0, . . . , Tk−1 is smaller than or equal to every one of Ai, . . . , Am−1 and Aj , . . . , Ah−1.

3. (i ≤ m, j ≤ h, k = (i− l)+(j−m), and a few other “housekeeping” relations that aren’t too interesting
or important for you to keep track of.)

Merge is both surprisingly tricky and surprisingly easy to analyze the running time of. It’s tricky, because
we actually can’t get tight bounds for many of the lines: pretty much every line can be executed between
Ω(0) and O(n) times! The trick is that there is some correlation between the line counts: if, say, line 7 is
executed 0 times, then line 11 must be executed Θ(n) times. So overall it’s still Θ(n).

Thankfully, we can also skip that whole analysis and use the fact that the very last loop runs in Θ(n)
time, while everything else runs in O(n) time, and Θ(n) +O(n) = Θ(n) so we’re good.

Theorem 6. Letting n = h− l, Merge takes time Θ(n).

Proof. The final loop takes time Θ(n) because it iterates over i = 0, 1, . . . , n− 1.
Every other loop iteration “eats up” exactly one thing from either the left half or the right half of the

array, hence can run for at most n times before it runs out of things to “eat.”
The lines outside of the loop iterations run at most once, hence Θ(n) in total.

2.3.4 Analysis of Merge Sort

Theorem 7. Merge sort is correct

Proof. (For recursive methods we usually don’t give explicit loop invariants, instead we’ll just induct on the
input size with the IH being that the program is correct for all smaller inputs. You can think of this as being
a very simple loop invariant, where the “looping” is actually the recursive call.)

By induction on input size.
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Base case: when A is empty, it correctly returns A.
Inductive case: by the IH we see that, before the merge call, Al, . . . , Am−1 and Am, . . . , Ah−1 are both

sorted. Hence, by the correctness of merge, after the merge call Al, . . . , Ah−1 are all sorted.

How should we go about analyzing the runtime? We’ll see a few different ways to approach this!
In all cases, we’re going to assume n = 2k, i.e., the input array is a power-of-two size. (This is a

questionable assumption, and you should have questions about it. But it turns out to be OK in most cases,
meaning, the resulting bound you find is usually true even if n is not a power of two. If we have extra time
let me know at the end of class and I’ll try to wing an explanation of one way to show that. The textbooks
work through some different ways of proving this explicitly; we won’t.)

Recursion Trees Approach to MergeSort Runtime

Let C be a constant so the work done on an input of size m is at most Cm.
Draw the recursion tree (will draw on whiteboard); imagine each node as a worker. The root worker only

does Cn work (the merge). He offloads the recursive calls to two subworkers, each one given an input of size
n/2.

Each one of those subworkers does only C(n/2) work themself after farming two jobs of size n/4 to their
subworkers.

This repeats; on level i from the root we have 2i ‘workers’ personally doing C(n/2i) work each, for a
total of

2i∑
w=1

C
n

2i
= Cn

work being done by all the workers on level i together.
How many workers do we have? Well, it stops once n/2i = 1, i.e., n = 2i, i.e., i = log n. So the total

work done by all the workers across the log n levels is

logn∑
l=1

Cn = Cn log n = Θ(n log n).

“Plug-and-Pattern-Match” Approach to MergeSort Runtime

Proof. (Alternate, more algebraic) Let T (n) be the time taken by merge sort to sort n items and assume
n = 2k. Then we have the relation:

T (2k) ≤ 2T (2k−1) + C2k

T (1) ≤ C

where C is some constant.
Now, plugging in the inequality for T (2k−1) into that for T (2k) and repeating this process gives us:

T (2k) ≤ 2T (2k−1) + C2k

T (2k) ≤ 2(2T (2k−2) + C2k−1) + C2k

= 22T (2k−2) + 2(C2k)

T (2k) ≤ 22(2T (2k−3) + C2k−2) + 2(C2k)

= 23T (2k−3) + 3(C2k)

...

T (2k) ≤ 2jT (2k−j) + j(C2k)

T (2k) ≤ 2kT (20) + k(C2k)

≤ 2kC + k(C2k) = C(k + 1)2k

= O(2kk).
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Recall that n = 2k and k = log n, hence

T (n) = O(n log n).

(Note that, pedantically, this only gives us O(n log n). But you could do the same argument by observing
T (2k) ≥ 2T (2k−1) +D2k for some constant D to get Θ(n log n).)

“Induction-from-the-Ansatz” Approach to MergeSort Runtime

When you already have a guess (“ansatz”) for the runtime, you can often use induction to prove it more
directly.

Proof. Same analysis as before, but now we prove via induction that:

T (2k) ≤ C(k + 1)2k.

Base case: for k = 0, it’s true by definition.
Inductive case:

T (2k) ≤ 2T (2k−1) + C2k

≤ 2(Ck2k−1) + C2k (by IH)

= Ck2k + C2k

= C(k + 1)2k.

“The Master Theorem” Approach to MergeSort Runtime

There is a theorem (the “master theorem”) that helps us automatically solve recurrence relations like this.
You are welcome to memorize it and use it on tests + problem sheets, but we won’t discuss it much in class.

Practical Uses of MergeSort

It has a very predictable runtime and is great for external sorting because you’re accessing the two halves
of the array sequentially (can read off from a tape quickly).

Design Corner

Merge sort is the first very clear example we’re going to see for the divide-and-conquer paradigm. In divide-
and-conquer, you find a way to break the problem down into smaller versions of the same problem (these
will get solved by recursion) where you can quickly combine those subproblem solutions into a solution to
the original problem (like “merge” does).

Question to ask yourself: if I could solve this problem for any portion of the input independently, can I
stitch those solutions back into a solution for the whole input?

2.3.5 Sorts We Know So Far

1. Selection sort: Θ(N2) in all cases

2. Insertion sort: Θ(N) best, Θ(N2) average and worst

3. Merge sort: Θ(N logN) in all cases, but it requires a lot of extra memory and data movement

Today we’ll see one of the all-around best sorting algorithms: quicksort. Similar to merge sort, quicksort is
a divide-and-conquer scheme. Unlike merge sort, it is randomized. We will see that quicksort has Θ(N logN)
behavior on all inputs with very high probability, i.e., you have to get very unlucky with your random decisions
for quicksort to be slow. In return for this tiny chance of getting unlucky, quicksort does away with the need
for temporary storage in merge sort.
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2.3.6 Post-Lecture Ed Notes

One student asked about parallelizing mergesort. CLRS discusses parallel versions of merge sort in Chapter
26.3. Long story short, if you just parallelize the recursive calls the best you can get is Θ(n) because there’s
still a Θ(n) sequential bottleneck for doing the merge. But you can, in fact, parallelize the merge (in a
nonobvious way) which gets you a much better bound of Θ((log n)3) in an idealized scenario with infinite
number of CPUs (as far as I understand from skimming the chapter).

Another thing that is outside the scope of this class, but still interesting, is to observe that merge sort is
very good for external sorting, i.e., sorting such a huge amount of data that it doesn’t all fit in memory at
the same time. This is in part because merge only requires looking at the ”tips” of each half of the array,
rather than the random access required by other algorithms. Interested students may read the section on
external sorting in Knuth.

In class we saw three methods of solving recurrences: the recursion tree method, the handwavey algebraic
substitution method, and the ansatz-and-induct method. There is a theorem called the ”Master Theorem”
that can sometimes be used to immediately solve the recurrences that we ran into while doing the latter
two methods. You are welcome to study the master theorem on your own and use it on exams (if properly
cited). But in my experience the master theorem is a lot of work to memorize, doesn’t save you much time
compared to the three methods we saw in class, and is usually useless anyways (e.g., as far as I know it is
completely useless for the expected-time analysis of quicksort that we’ll see on Monday).

It is possible to implement merge sort in a natural, nonrecursive way: first apply merge to every pair of
2 items, then every subsequent group of 4, etc. Implementing this nonrecursive version might be a fun task.

In class, we found it significantly easier to prove time bounds for merge sort restricted only to the case
where n is a power of two. You are welcome to do the same on exams for solving such recurrences, as long
as you explicitly state that’s what you’re doing. Some of you, however, may be uncomfortable with this
restricted proof. And rightly so. If you are such a student, you may wish to convince yourself that our
analyses also hold for inputs with non-power-of-two size. There are many different ways to do this; here are
a few pointers:

• As far as I know, CLRS explicitly does not cover this (see the discussion at the very beginning of
Section 4.6)

• The Erickson book discusses one approach on page 34 (”Ignoring Floors and Ceilings Is Okay, Honest”)

• I’m not sure if Knuth or SW discuss this issue.

• For MergeSort in particular, I think you can adapt the recursion tree approach to see that it’s true
for all n. Sketch: every element in the original list is given to at most one ”worker” on each level, so
the total work is at most Cn on each level. And the argument that the depth is at most O(log n) still
holds. So total time is still CnO(log n) = O(n log n).

• Let T (n) be the worst-case runtime of the algorithm on size n input. If you can convince yourself
that T (n) is increasing (or at least eventually increasing), then proving T (n) = O(f(n)) for only the
cases n = 2k is actually sufficient (this is a nonobvious claim you might want to try proving: you’ll
need one more assumption, which is that f(n) ”doesn’t grow too fast,” specifically I think you need to
assume g(n) = O(f(n)) where g(n) = f(2n). That condition itself is kind of interesting; I think you
can interpret it as a limited variant of Lipschitz continuity)

• For many algorithms, a variant of the following ”padding technique” suffices to tell you at least there
exists an algorithm with the desired complexity. Suppose you have an algorithm A that sorts any list
of size 2k and runs in time O(f(2k)) on inputs of size 2k, where f(n) is a function that ”doesn’t grow
too fast” (this can be made precise). Then there is an algorithm Y that sorts any input of size n (not
necessarily a power of two) in O(f(2[logn])) +O(n) time (where [log n] means log n rounded up to the
nearest integer). In particular, if f(n) = Ω(n) and doesn’t grow too fast, then algorithm Y will run in
time O(f(n)), which is what we want. Algorithm Y does the following:

1. First, find the maximum element M in the list (takes O(n) time).
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2. “Pad” the list, inserting 2[logn]−n extra copies of M +1 at the end of the list (depending on how
your list is stored, takes about 2[logn] − n = O(n) time).

3. Run algorithm X to sort the padded list (takes time O(f(2[logn])) = O(f(n)), assuming f(n)
doesn’t grow too fast.

4. The copies of M + 1 you added are now still at the end of the list; remove them. (time O(n)).

5. Adding those up, the total time is O(n) +O(n) +O(f(n)) +O(n) = O(f(n)) +O(n) = O(f(n)),
assuming f(n) = Ω(n).
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Name: Stanford ID Number:

2.3.7 Lecture 6/28 Practice Quiz Question

Here is the Merge code from class:

1 def merge(A, l, m, h):

2 # assume [l, m) sorted and [m, h) sorted

3 T = (scratch space of size >=N)

4 k, i, j = 0, l, m

5 while i < m and j < h:

6 if A[i] <= A[j]:

7 T[k++] = A[i++]

8 else:

9 T[k++] = A[j++]

10 while i < m:

11 T[k++] = A[i++]

12 while j < h:

13 T[k++] = A[j++]

14 i = 0

15 while i < h - l:

16 A[l + i] = T[i]

Problem 2: Explain why it is OK to insert the following line at the start of the merge function:

1 if A[m-1] <= A[m]: return
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2.4 Week 1 Homework

2.4.1 Lecture 6/24

Big-O

Problem 1: Review the definition of big-O in CLRS. Then prove carefully that:

1. O(f(n)) +O(g(n)) = O(f(n) + g(n)),

2. O(p(n)) = O(nk) if p(n) is a polynomial of degree k, and

3.
∑n

i=1 f(n) = O(n2) assuming f(n) = O(n).

Hint: Hint(s) are available for this hproblem on Canvas.

Problem 2: (Do Knuth 1.2.11.1.6; not copying here for copyright reasons)

Selection Sort

Problem 3: Devise a sequence of inputs (one for each length n) that seems to maximize the number
of times you update the running minimum (i.e., run m=j in the algorithm shown in the 6/24 lecture)
in selection sort’s inner loop. Compute (in terms of n) how many times it updates on this input. (No
need to prove it does maximize, but if you want to try, consult Knuth exercise 5.2.3.6)

Algorithm Design

Problem 4: (Diagrams for this hproblem are available in Erickson, page 49.) Provide pseudocode for
an algorithm that sorts a stack of pancakes by diameter. The only operation you are allowed to perform
on the stack is to place a spatula under a pancake of your choice in the stack, then flip the substack of
pancakes above your spatula. Your algorithm should take O(n) flips. Can you adapt this algorithm to
sort a list on a normal computer in O(n) time? Why or why not?

Problem 5: (Prep for heapsort) Answer the following questions:

1. Provide pseudocode for a modified version of selection sort that takes time O(n
√
n).

(Hint: First divide the n elements into
√
n groups of

√
n. Feel free to assume that n is a square

number in your time analysis.)

2. Describe how, for any integer k, you can generalize that construction to get a version that takes
time O(n k

√
n).

3. Prove that n
√
n = O(1) and n n

√
n = O(n).

4. Explain why we cannot take k = n in part (2) to get a version that takes time O(n n
√
n) = O(n).

5. Show how to modify the construction to get time O(n log n).

For all parts, your construction may use O(n) additional memory.

Hint: Hint(s) are available for this problem on Canvas.

2.4.2 Lecture 6/26

Insertion Sort
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Problem 6: Notice that the left-hand portion of the array is always sorted during insertion sort. Show
how to use binary search to find the insertion point in O(log n) time. Does this variant make insertion
sort O(n log n) time? What if you use a linked list instead of an array to store the list?

Problem 7: An inversion in a list A0, . . . , An−1 is a pair (i, j) of indices with i < j but Ai > Aj .
Prove that the number of swaps performed by the insertion sort algorithm we saw in lecture is equal to
the number of inversions in the original list.

Hint: Hint(s) are available for this problem on Canvas.

Merge Sort

Problem 8: (Erickson) Provide pseudocode for an O(n log n) time algorithm to count the number of
inversions in a list.

Hint: Hint(s) are available for this problem on Canvas.

Average Time Analysis

Problem 9: Determine the average number of times you update the running minimum (i.e., run m=j

in the algorithm shown in the 6/24 lecture) in selection sort, assuming every permutation of n distinct
elements is equally likely for the input.

Hint: Hint(s) are available for this problem on Canvas.

2.4.3 Lecture 6/28

(Pushed to week 2!)
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2.5 Lecture 7/1 Notes

2.5.1 Sorts We Know So Far

1. Selection sort: Θ(N2) in all cases

2. Insertion sort: Θ(N) best, Θ(N2) average and worst

3. Merge sort: Θ(N logN) in all cases, but it requires a lot of extra memory and data movement

Today we’ll see one of the all-around best sorting algorithms: quicksort. Similar to merge sort, quicksort is
a divide-and-conquer scheme. Unlike merge sort, it is randomized. We will see that quicksort has Θ(N logN)
behavior on all inputs with very high probability, i.e., you have to get very unlucky with your random decisions
for quicksort to be slow. In return for this tiny chance of getting unlucky, quicksort does away with the need
for temporary storage in merge sort.

2.5.2 Quicksort

In merge sort the key operation we took advantage of was merge: take two sorted lists and make one big
sorted list.

In quicksort the key operation we will take advantage of is partition: given a list and an element X in
the list, rearrange that list so that everything below X is less than it and everything above X is greater than
it. Note this does not require those two sides to be sorted within themselves.

Example: partition [8, 10, 5, 20] on 8: [5, 8, 20, 10] is a valid outcome, as is [5, 8, 10, 20]. In general we
don’t know which of those we’ll get; it depends on the exact partitioning algorithm.

Partitioning algorithm adapted from SW:

1 def partition(A, lo, hi):

2 # rearranges A[lo], ..., A[hi-1] and returns an index p where:

3 # - A[lo],...,A[p-1] are all AT MOST A[p]

4 # - A[p+1], ..., A[hi-1] are all AT LEAST A[p]

5 swap A[lo] <-> A[random(lo, hi)]

6 v = A[lo]

7

8 i, j = lo, hi

9

10 while True:

11 while A[++i] < v:

12 if (i+1) >= hi:

13 break

14 while A[--j] > v:

15 pass

16 if i >= j:

17 swap A[lo] <-> A[j]

18 return j

19 swap A[i] <-> A[j]

Recall eventually we want the left “half” of the array to be all things less than v and the right “half” of
the array to be all things greater than v. The basic insight of this pivoting algorithm is to find something
“on the left” that is too big, and something “on the right” that is too small. We know those two must be
out of place, so we swap them.

Show how it works on an example.

Theorem 8. Partition is correct

Proof. Outer loop maintains the invariant: Alo, . . . , Ai are all at most v, and Aj , . . . , Ahi are all at least v.
First inner loop maintains this invariant as well, so when we exit the first inner loop we know Alo, . . . , Ai−1

are all at most v. There are two possibilities, depending on how we exited the loop:
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1. Either i = hi, or

2. Ai ≥ v.

The second inner loop maintains the invariant that Aj , . . . , Ahi are all at least v. So when we exit that
loop we see that Aj+1, . . . , Ahi all at least v, while Aj ≤ v.

Suppose we exit on line 18 (this includes the case i = hi). At that point we know that A0, . . . , Ai−1 are
at most v, while Aj+1, . . . , Ahi are at least v, and Aj ≤ v. Hence, swapping Aj with A0 ensures that all
of Aj , . . . , Ahi are at least v. But j ≤ i, and we knew A0, . . . , Ai−1 were at most v, so we’ve successfully
partitioned!

Theorem 9. Partition takes time Θ(n)

Proof. The distance j − i decreases by one on each inner loop iteration, hence takes Θ(n) time before they
meet.

Let’s stop and observe something interesting about partition: afterwards, Ap is in its final sorted position!
So we no longer need to worry about moving it, and we can sort both remaining “halves” separately. This
observation leads to the quicksort algorithm:

1 def quicksort(A, lo, hi):

2 if (hi - lo) <= 1: return

3 p = partition(A, lo, hi)

4 quicksort(A, lo, p)

5 quicksort(A, p+1, hi)

Theorem 10. Quicksort takes worst-case Θ(n2) time.

Proof. Suppose we get extremely unlucky and always choose the smallest element in the array to pivot on.
This will result in p = 0 so our recursive call will be one of size 0 and another of size n− 1. This repeats to
get work n+ (n− 1) + · · ·+ 1 = Θ(n2).

Think-pair-share: what is the chance we get that super unlucky?

Theorem 11. Quicksort takes best case Θ(n log n) time.

Proof. (Hand-wavey) If we get lucky and choose the median every time, then we end up splitting the array
in half (minus one), and the recursion tree looks identical to that of merge sort.

Actually, it’s a bit better than merge sort because we’re taking one guy out every time.

Theorem 12. Quicksort takes expected time Θ(n log n) when all elements are distinct.

Proof. (Adapted from SW) We’re going to count only comparison operations, i.e., lines 11 and 14 in the
partition method. This is OK, because quicksort always performs a comparison within a bounded number
of operations.

Let the expected number of comparisons be C(n), and n = hi − lo. When all the values are distinct,
the partition method makes exactly n + 1 comparisons: n − 1 “useful” comparisons, and then a final 2
comparisons when i and j hit their boundary. We then recurse on instances of size p and n−p−1, where p is
the offset of the pivot from lo. But we picked the pivot at random, so each of the options p = 0, 1, · · · , n− 1
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are equally likely. This tells us

Cn = (n+ 1) +
1

n

n−1∑
p=0

(Cp + Cn−p−1)

= (n+ 1) +
1

n

(
n−1∑
p=0

Cp

)
+

1

n

(
n−1∑
p=0

Cn−p−1

)

= (n+ 1) +
1

n

(
n−1∑
i=0

Ci

)
+

1

n

(
n−1∑
i=0

Ci

)

= (n+ 1) +
2

n

n−1∑
i=0

Ci

At this point, we get a sum that is beyond what we would expect you to be able to solve on an exam. But
it’s fun to see how anyways!

When you see sums like this, you should always first try subtracting the value for Cn−1 from the value
for Cn. Unfortunately, in this case, I don’t think that turns out to be very helpful (at least I couldn’t figure
out how to solve it from there). The trick is to clear denominators first; it turns out this makes the sums
much, much easier to cancel out. In this case, let’s look at:

nCn − (n− 1)Cn−1 = n(n+ 1) + 2

n−1∑
i=0

Ci − (n− 1)n− 2

n−2∑
i=0

Ci

= 2n+ 2Cn−1

Cn = 2 +
n+ 1

n
Cn−1

Notice how clearing denominators on the sums made them cancel out nicely!
At this point we need one more trick: divide both sides by n+ 1 to get

Cn

n+ 1
=

2

n+ 1
+

Cn−1

n
.

The key here is that there’s now a clean recurrence; when you rename Sn = Cn

n+1 , we see this becomes just

Sn = 2
n+1 + Sn. Expanding that out gives us

Cn

n+ 1
=

2

n+ 1
+

2

n
+

2

n− 1
+ · · ·+ 2

3
,

where notice we stop at 2
3 because the term C1

2 = 0.
Hence,

Cn = 2(n+ 1)

(
1

n+ 1
+

1

n
+

1

n− 1
+ · · ·+ 1

3

)
= 2(n+ 1)(Hn+1 −H2) = Θ(2n log n).

(Note the last step relies on the fact that Hn = Θ(log n). There is a beautifully visual proof of this fact
that I suggest calculus-inclined readers to try to find. Hint: recall the integral definition of log n.)

CLRS has an alternate solution looking at the probability any two values are compared. Much easier to
solve the resulting algebra. If we have time, might show both. But the homework is already going to walk
through yet another approach (involving the depth of the call stack) so might not be worth it.

Why Quicksort?

Relatively little data movement. In-place. Tight inner loop. Good cache behavior; just linear scans.
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2.5.3 Selection

Let’s finish by seeing one more application of the partition algorithm: quickselect.
Here’s the problem: suppose you want to find the ith smallest element in a list. One thing you could do

is just perform quicksort (or any other O(n log n) algorithm) and then look at the element in the resulting
list at index i − 1. But is there any way to do better? Clearly we can at least find the min quickly (linear
scan; we did it in selection sort!).

One neat way to do it is to adapt the quicksort routine. But notice, after partitioning, we know exactly
which partition the ith element will land in! So in fact, we only need to recurse into one partition. This is
made explicit below:

1 def select(A, lo, hi, i):

2 if (hi - lo) <= 1: return A[lo]

3 p = partition(A, lo, hi)

4 if p == i:

5 return A[p]

6 if i < p:

7 select(A, lo, p, i)

8 if i > p:

9 select(A, p+1, hi, i)

Quickselect Efficiency

But wait! Quicksort takes Θ(n log n) time anyways right? Are we really saving anything?
In fact we are! The key is we’re only making one of the recursive calls, so we do half as much work each

time. Unfortunately, it’s not very easy to adapt our analysis of quicksort to reflect this. Let’s try and see
why. Our quicksort recurrence was

Cn = (n+ 1) +
1

n

n−1∑
p=0

(Cp + Cn−p−1)

It “feels” like we should be able to make an analogous recurrence for quickselect by just dropping one of the
recursive calls:

C ′
n = (n+ 1) +

1

n

n−1∑
p=0

C ′
p,

but in fact that isn’t valid! Why? Because, depending on the value of i, all the possible sizes to recurse into
aren’t equally likely! E.g., if i = n/2, it’s impossible to recurse into a sublist of size smaller than n/2.

We can get a rough guess at the time of quickselect by looking at an “extremely average” scenario:
suppose the pivot is always chosen to be the median. In that case, we’ll always recurse into an exactly
n
2 -sized list, and halt after log n recursions. This gives us time:

n+
n

2
+

n

4
+ · · ·+ 1 = n

logn∑
i=0

1

2i
= Θ(n).

In fact, this rough analysis gives us the right asymptotic answer: the expected time for quickselect is
Θ(n). We’ll see a rigorous proof of this on the homework!

Quickselect is a really clever and quite surprising algorithm. It is possible (but nontrivial) to derandomize
it; see Erickson for worked details on ‘MoMSelect.’

2.5.4 Wrap Up

So we’ve seen:

• QuickSort
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• QuickSelect

• Expected time

Now, let’s go on to the practice quiz!

2.5.5 Post-Lecture Ed Notes

• It is very tempting to try to adapt the recurrence relation proof we saw for the expected time of
Quicksort to show the expected time of Quickselect. But doing that correctly is actually very hard, for
a somewhat nonobvious reason. This is discussed in the lecture notes for today, which I suggest you
read.

• There was a question about how we are covering neither the master theorem nor generating functions.
FYI, as far as I can tell, neither is in the ExploreCourses blurb. If you want to research them on your
own, see re: master theorem, (previous Ed post) Re: generating functions, Knuth 1.2.9.

• You can prove the expected time result for Quicksort in many different ways. I know of at least three:

1. The recurrence relation approach we saw in lecture.

2. A very slick approach based on computing the probability that any two elements of the array
will be compared with each other. See CLRS 7.4.2. This approach is really pretty, but it’s very
specific to quicksort so not quite as useful more generally.

3. It is also possible to turn the recursion tree method (which we used to show a best-case bound,
if you always pick the median) into a rigorous argument for expected time. The way to do this
is to prove that, with very high probability, the tree does not have depth larger than k log n for
some large k. How should you do that? Well, it turns out that you have a good chance of picking
your pivot in the middle 50% of the array each time, and if you do that, then the sublists you
recurse on have size at most 75% the size of the original list. It turns out this is close enough to
the merge-sort tree (drop to 50% of the size each time) to bound the depth with high probability.

– You’ll do something very similar to this approach on the homework, except for Quickselect.
To adapt it to Quicksort, you’ll probably need to look at probabilities instead of expected
value and use ”Hoeffding’s inequality” along with the ”union bound.” If you’re interested in
this, send me a message and I can write up some guiding hints to work you through the proof.
(In particular, you can pick a constant C large enough to make the following work:)

– Use Hoeffding’s inequality to bound the probability that, in a sequence of m independent
coin flips, at most m

C of them come up heads. (Nothing too specific to Hoeffding’s here, e.g.,
should be able to use a Chernoff bound as well.)

– Think about the recursion tree for Quicksort. Then revisit week 2 HW problem 2, but this
time use part (1) above to bound the probability that some particular leaf of the recursion
tree is deeper than C log4/3 n.

– Apply the union bound to your result from (2) with this count to get an upper bound on the
chance that any node in the recursion tree is deeper than C log4/3 n.

– If the event described in (3) occurs, what’s an upper bound on the worst possible runtime?
What if the event described in (3) does not occur? You should be able to combine those two
runtime bounds with the bound on the probability of that occurring from (3) to upper bound
the overall expected time for Quicksort.

– In fact, this analysis tells you a bit more than the one we did in lecture because it also naturally
gives you the probability that any branch is very deep. (Though I’m told it’s possible to extend
the recurrence relation approach to a recurrence for the variance, so maybe that would be
even better.)

• In practice, Quicksort is one of the fastest sorting algorithms we have. This is due to a number of
reasons. One is that there is a lot less data movement than mergesort (you relatively rarely swap in
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Quicksort, whereas mergesort moves items into temporary space and back every time you call merge).
Also, the inner loops have very good spatial locality. Also, you always compare one memory read to a
local variable, so each inner loop iteration only does one memory read, not two.

• Someone at the end of class asked why I said Quicksort uses Θ(log n) expected additional memory,
rather than Θ(1). The reason is that recursion isn’t free: when you make a recursive call, the computer
first has to save the value of all of your local variables before the call so that they can be restored
once that call returns. Hence every call in the call stack requires its own constant amount of space.
The recursive call stack is expected to have depth Θ(log n), hence the expected space usage is Θ(1) ·
Θ(log n) = Θ(log n).

• As mentioned, you can derandomize both Quicksort and Quickselect to get an O(n log n) truly worst-
case algorithm. The trick is a very clever way to find the median in linear time. Erickson has an
extended discussion of this algorithm, the ”MoM” algorithm, in section 1.8.
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Name: Stanford ID Number:

2.5.6 Lecture 7/1 Practice Quiz Question

Here is the Partition code from lecture:

1 def partition(A, lo, hi):

2 swap A[lo] <-> A[random(lo, hi)]

3 v = A[lo]

4 i, j = lo, hi

5 while True:

6 while A[++i] < v:

7 if (i+1) >= hi:

8 break

9 while A[--j] > v:

10 pass

11 if i >= j:

12 swap A[lo] <-> A[j]

13 return j

14 swap A[i] <-> A[j]

Imagine running the partition algorithm once on the array [2n, 2n−1, . . . , n+1, n, n−1, . . . , 2, 1]. Answer
the following questions. No justification is necessary. You should try to get an exact (nonasymptotic) count,
but it’s OK if your counts are off by a small constant number. Feel free to use the back for scratch space.

Part 1: How many swaps would occur if the random pivot was chosen to be 5 (i.e., at index 2n− 5)?

Part 2: How many swaps would occur if the random pivot was chosen to be 2n− 5 (i.e., at index 5)?

Part 3: Devise a general formula for how many swaps occur if the pivot is chosen to be the element at
index i. (You might need a case split depending on whether i is in the first or second half of the list.)
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2.6 Lecture 7/3 Notes: Heaps, heapsort, and stability

2.6.1 Thoughts on Feedback from the First Homework

Thanks everyone for the great feedback! Some thoughts below:

• Difficulty seems about right. Median was about 10 hours, which is expected: Stanford says 5 units
means 5h of lecture and 10h of extra work. If you do not have the prerequisites, of course, you should
expect to spend significantly longer studying every week.

• LATEX was hard. Unfortunately that’s really something you have to practice, practice, practice. You’re
more than welcome to ask LATEX help questions on Ed.

• A few people mentioned having to refer to textbooks or do extra research for the problems. That’s
fine, but please note that the questions are designed to be solvable (given enough time) using just
material from lecture + the hints provided on Canvas. For example, one or two of the textbooks might
give a proof for the inversions problem. But at this point in your career you should be able to read
the definition given in the problem, understand what it means, and prove things like the lemma given
in the hint. So, again, totally fine to find things in a textbook, but just note that there is a skill here
(understanding and working with curt definitions) that it circumvents practice of.

• There was some concern that people could only do many of the problems after looking at the hints,
but there won’t be hints on the exam. Actually, it’s the exact opposite! The only reason we hide the
hints on a homework is because you have so much time; on a timed exam the problems will be
easier and we’ll give more hints/guidance/structure. More generally, it is expected that you
can’t solve many of the HW problems without hints (otherwise I wouldn’t provide hints). But I think
it’s still useful to your learning to spend a few minutes thinking about each problem without hints.

• A few folks suggested having a per-HW pinned Ed post with suggested problems, difficulty ratings,
corrections, etc. — we’ll start doing that with HW2!

Lecture feedback:

• Seems like the pacing is pretty good; some of you think it’s too fast and some think too slow, but the
median seem to think it’s just right. We’ll reëvaluate as the quarter goes on, but I think this is a good
pace. For folks worried about dropping topics, don’t freak out yet. Currently the only thing we need
to drop is noncomparison sorts, which aren’t very useful anyways. And we have a few catchup lectures
later in the quarter that we can use up. On net, we still cover significantly more than the normal
quarter (because we have more frequent and longer lectures).

• I’ll try to start writing the pseudocode up before lecture, to better manage font size, etc. If you like
to copy it down into your notes, you may want to come by a bit early to do so.

• Someone found a typo in the lecture notes; thank you!!! Please be on the lookout for typos and report
any typos you find. We’re putting together lecture notes, homework problems, practice questions,
exams, and solutions all in real time; that’s 25+ pretty dense pages of content per week. Unfortunately
we’re not perfect and there are going to be typos and mistakes. We will try to be prompt in confirming
+ correcting any issues reported!

2.6.2 Sorts We Know So Far

For inputs stored in a contiguous array:

1. Selection sort: Θ(N2) in all cases.

2. Insertion sort: Θ(N) best, Θ(N2) average and worst.

3. Merge sort: Θ(N logN) in all cases, but it requires a lot of extra memory and data movement.
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4. Quicksort: Θ(N logN) expected, but O(N2) worst case, and still uses Θ(log n) extra space for the call
stack.

The holy grail would seem to be an absolute Θ(N logN) worst case, in-place sort. Is this possible? Yes, and
we’ll learn one (heap sort) today!

Surprisingly, heapsort is essentially just an implementation detail on top of selection sort. In some
sense, that makes selection sort both our asymptotically worst algorithm and also our asymptotically best
algorithm!

2.6.3 Dynamic Sorting, Heaps, and Priority Queues

Before we get there, though, we’re going to take a little detour and learn about priority queues and the
max-heap data structure.

So far in this class we’ve been assuming you start with n items and want to find out their exact sorted
order with respect to each other.

Consider the following problem: we want to keep track of the tallest current Stanford student. (Draw
four people with their heights.) How might we do this?

• Could keep track of an unsorted list of all the Stanford students out there, and every time we’re curious
about the tallest we scan the whole list to find out who it is. With doubly linked lists, this has O(1)
insertion/deletion but O(n) queries.

• Could keep track of a sorted list. If it’s stored as a doubly linked list that makes deletion O(1), insertion
O(n), and queries O(1).

We’re kind of stuck here: no matter what, it seems like we have to cycle through everyone at Stanford very
frequently, even if only one new student joins!

The classic data structure to solve this problem is called a max-heap. It lets us perform the following
operations:

• Insert into the max heap in O(log n) time

• Delete from the max heap in O(log n) time

• Find the maximum of everything the max heap in O(1) time

Even if everyone in the world enrolled at Stanford, this takes only about 33 operations (times the constant
factor in the big-O) to insert/delete one student! Pretty good.

How does it work? Our good friend the binary tree shows up here. We’re going to organize everyone into
a binary tree. Who should be at the top? Let’s put the tallest person! In fact, our heap will be defined by
this property, that parents are bigger than their children:

Definition 5. A max-heap is a binary tree with the following property: the value of every node is at least
the value of its children.

As with any kind of binary tree, one of the big things we’ll need to think about is balance. Informally,
the best balance we can hope for is for the tree to be complete:

Definition 6. A binary tree is complete if layer i from the root has 2i nodes, except possibly the last layer,
and all nodes in the last layer are “as far left as possible.”

Walk through some example binary trees and ask (1) is it a max-heap? (2) is it a complete binary tree?

Important to clarify this is just a definition: we haven’t yet seen how to put everyone into this form or
how to insert/delete people.
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Almost-Heaps and Heap Fixing

Consider inserting into a heap. One thing you could try to do is just add the new item as a leaf. But that
might violate the heap property, if the new item is bigger than its parent.

The key operation that makes heaps possible is one we’ll call fixing. Fixing is the process of turning an
almost-heap into a true heap.

Definition 7. An almost heap broken at node x is a binary tree that can be made into a heap by changing
the value of x.

(Draw some examples.)
How to fix an almost-heap? Well, suppose you have an almost-heap broken at x. There are two possibil-

ities:

1. If x’s value is bigger than its parent, swap it with the parent. Now you have either a heap, or if x’s
value is bigger than its new parent, an almost-heap broken at x again. Repeat until you have a heap!

2. If x’s value is smaller than one of its children, swap it with the biggest of its children. Now you have
either a heap, or an almost-heap broken at x again. Repeat until you have a heap!

The first process is called swimming, the latter is called sinking. You should convince yourself that either
terminates in time O(d), where d is the depth of the heap. If we make sure to always add new nodes in such
a way to fill the tree maximally, then this takes time O(log n).

Pseudocode looks like:

1 # CONVENTION: if x is the root, then parent(x) = x. If x does not have the

2 # r/l_child, then r/l_child(x) = x.

3 def swim(x):

4 while x.value > parent(x).value:

5 swap x <-> parent(x)

6 def sink(x):

7 while x.value < largest_child(x).value:

8 swap x <-> largest_child(x)

9 def update(x, new_value): # won't need this for this class

10 old_value = x.value

11 x.value = new_value

12 if new_value < old_value: sink(x)

13 else: swim(x)

(Quote SW workplace joke.)
Note this is pretty high-level pseudocode; we haven’t yet talked about how to represent the heap, so this

doesn’t tell us much.

Heap Operations: Insertion, Deletion, Find-Max, Creation

Finding the maximum is easy: according to the heap property, it’s at the root. Proving this carefully using
the definition of the heap property is a nice exercise.

1 def find_max(heap):

2 return root(heap).value

How should we insert into the heap? The idea is to insert the new node on the very last level. You now
have an almost-heap broken at that node, so fix it.

1 def insert(heap, value):

2 x = new node

3 x.value = value

4 insert x at the leftmost empty slot in the last unfilled layer of heap

5 swim(x)



2.6. LECTURE 7/3 NOTES: HEAPS, HEAPSORT, AND STABILITY 43

How should we delete from a heap? Well, it’s easy to delete a leaf from the heap: just do it; there’s no
way for that operation to harm the heap property! To delete some other node from the heap, replace its
value with that of a leaf, delete the leaf, then fix the heap at that node.

1 def delete(heap, x):

2 l = rightmost leaf in last layer of heap

3 if x is l:

4 remove x from heap

5 else:

6 old_value = x.value

7 swap x.value <-> l.value

8 remove l from heap

9 if x.value > old_value: swim(x)

10 else: sink(x)

How can we turn a random tree into a heap? This operation is called heapify. Well, at least if it’s
complete, note that all the leaves (in the last level) are already heaps (vacuously). Then, every node on the
penultimate level is an almost-heap broken at that node. You can turn those into heaps by sinking them.
Repeating this up the tree, you eventually turn the root itself into a heap!

1 def heapify(heap):

2 for level in heap.bottom_level(), ..., heap.top_level():

3 for node in level:

4 sink(node)

Theorem 13. All of the heap operations above are correct. If the heap is a complete binary tree, all of
them except for heapify take O(log n) time. Heapify takes time O(n log n). (On the homework you’ll prove
a tighter bound for heapify!)

Proof. (Sketch) Sink/Swim maintain the invariant that the tree is always either a heap or an almost-heap,
and if it starts off broken at a node that’s too small (too large), sink (swim) will only halt once the tree is a
heap.

All other correctness claims follow from correctness of sink/swim. Heapify maintains the invariant that
every node in the previous level is the root node of a heap defined as the subtree rooted at that node.

For time complexity, it follows from the fact that such a complete tree never has depth more than Θ(log n),
along with the fact that Sink/Swim takes time (in the worst case) proportional to the depth of the tree.

There is at least one nuance in the above, which is that we need to be able to quickly find the rightmost
leaf on the final layer (for delete). We’ll see soon how to do this.

Heap Sort

We’re now ready to see pseudocode for heapsort. The basic idea is to do selection sort with two small
modifications: First, we pick out the max every time rather than the min (this isn’t critical). Second, we
store the elements in a heap so that we can quickly find the max element.

1 def heapsort(A):

2 heap = complete binary tree made of elements in A

3 heapify(heap)

4 for i = 0, 1, ..., n-1:

5 delete root of heap and place at A[n-1-i]

Theorem 14. Heapsort is correct and takes worst-case time O(n log n).
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Proof. Correctness follows from correctness of the heap operations and the invariant that, whenever the for
loop is run, An−i, . . . , An−1 are the largest i elements in sorted order.

Time follows from the time complexity of the heap operations.

At this point, we have an O(n log n) worst-case time algorithm, but it seems like it should require Θ(n)
extra space to store the heap. What gives?

The secret is a very clever way of reusing the input array A itself to represent the heap!

How to Represent a Heap?

In the above pseudocode we’ve been very tight-lipped about how exactly the heap is represented/stored in
the computer.

In 106B you may have seen binary trees represented as linked structures, i.e., with pointers. Surprisingly,
that’s not strictly necessary! If we make sure the heap is a complete binary tree, we can store all the nodes
contiguously in an array.

(Draw picture)
The basic idea is to store the tree level-by-level. Level 0 has 20 = 1 node, which gets index 0. Level 1

has 21 = 2 nodes, which get indices 1 and 2. Etc.
In our pseudocode, the main operations we need to do are:

1. Find your parent,

2. Find your left/right children, and

3. Find the rightmost leaf (to either delete it or insert after it)

The rightmost leaf is always the last thing in the flattened representation. The right child is always one past
the left child. Finding your parent is going to be the inverse of the process to find your parent’s child. So
let’s focus just on finding your left child.

Suppose you’re looking at the first node on level i. Because each level has two children per node on the
prior level, that node will have index 2i − 1. Its left child, in turn, will have index 2i+1 − 1. So if x = 2i − 1
is the index of the node you’re starting with, its child is at position 2x+ 1.

What if you’re not the first node on a level? Then your index can be written x = 2i − 1 + k, where k
is the number of nodes before you on that level. Well, your left child is going to be on the level below you
(hence starting at 2i+1 − 1) and there will be 2k nodes before it on level i+ 1, two for each node before you
on level i. Hence, your left child will be at 2i+1 − 1 + 2k, which can also be written 2x+ 1.

So in general, ignoring the corner cases where you have no parent or child:

1. Left child is 2x+ 1,

2. Right child is 2x+ 2,

3. Parent is ⌊(x− 1)/2⌋,

4. Last leaf is N − 1.

Using those identities, you can implement all of the heap pseudocode we saw earlier with the heap stored
as an array.

An alternate approach to the contiguous array heap indexing rules If you start numbering at 1
instead of 0, there’s also a cute explanation for these rules discussed at https://cs.stackexchange.com/
questions/87154/why-does-the-formula-2n-1-find-the-child-node-in-a-binary-heap: the binary
encoding of the index of each node describes the path taken to get to it from the root. E.g., 5 = 1012 means,
reading from msb to lsb, “start at the root, then move left, then move right.”

With some work, you can convince yourself that this encoding is both dense for complete trees (there
are no unused slots in the array) and also that nodes are placed in level order (first level, then second level,
etc., and within a level from left-to-right). So it’s the same as the encoding we wanted above, just starting
at one instead of zero.

https://cs.stackexchange.com/questions/87154/why-does-the-formula-2n-1-find-the-child-node-in-a-binary-heap
https://cs.stackexchange.com/questions/87154/why-does-the-formula-2n-1-find-the-child-node-in-a-binary-heap
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Now, the path to your left child is the path to you and then one move left. So your left child’s index
must be your index with a zero appended to its binary encoding, e.g., the left child of 1012 should be 10102.
But appending a zero to the binary encoding of a number just means multiplying it by two, hence in this
encoding you get the left child c′ of i′ is at c′ = 2i′. But letting i and c be the corresponding zero-based
indices, we see i′ = i+ 1 and c′ = c+ 1, hence c+ 1 = 2(i+ 1), i.e., c = 2i+ 1 which is exactly what we saw
before.

Heap Sort

So now we can think of heapsort in all its glory!

We first turn the entire array, in place, into a heap. This means the maximum element is at index 0,
and the final leaf is at index n− 1. Then, we repeatedly “delete” the root from the heap. But think about
what this deletion procedure does: it’s first going to swap the root (maximum element) with the final leaf
(at index n − 1), then forget about the leaf storing the max now at index n − 1, and then it’s going to fix
up the remainder of the heap from 0 to n − 2. In other words, it moved the maximum element to exactly
the right place, and set up the remainder of the list in a perfect spot to repeat the whole process among the
first n− 2 elements!

Let’s see a miniature example. If we start with the array [4, 3, 2, 1], the heapify routine will do nothing
(it’s already a heap!). Then the first deletion will turn the array into [3, 1, 2, 4]. Then the second deletion
(now among the first 3 elements, not all four) will turn the array into [2, 1, 3, 4]. Then the third deletion
(now among the first two elements, not all four) will turn the array into [1, 2, 3, 4]. And finally the fourth
deletion will end up leaving it as-is: [1, 2, 3, 4].

Theorem 15. Properly implemented for arrays, heapsort takes worst-case time O(n log n) and Θ(1) addi-
tional memory.

Proof. Time is the same, but now we don’t need extra space to store the heap!

Sorting Stability

Suppose we want to sort three students by height: Jackson (7 ft), Matthew (6 ft), and Annie (7 ft). What
should the result be? Definitely Matthew should come first as the shortest, but there’s some ambiguity
between whether Jackson or Annie should come next since they both have the same height: one of MJA or
MAJ seems acceptable.

In this particular scenario it might be preferable to ‘tie-break’ by sorting people of the same height by
name, and oftentimes if you have ambiguity like this the true fix is in fact to make your comparison function
more sensitive. But our algorithms aren’t able to guess at how you wanted to compare otherwise-equal
things, so what should they do instead? A reasonable desire is for the algorithm to be what we call stable:

Definition 8. We say a sorting algorithm is stable if equivalent items are ordered in the sorted list exactly
as they are ordered in the input list.

For example, if the input was JMA with J and A the same height, the output of a stable sorting
algorithm should be MJA. If the input was AJM, the output should be MAJ. You can see this as either a
simple tiebreaking rule that makes the output predictable, or you might also interpret it as an assumption
that the original ordering already means something and we should try not to violate it if possible.

2.6.4 Wrap Up

We’re now pretty much done with our survey of sorting algorithms. We’ve “bottomed out” at a worst-case
bound of O(n log n). Is that the best that can be done? We’ll see next time!

Now, let’s go on to the practice quiz!
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2.6.5 Post-Lecture Ed Notes

You may also hear ”sink” and ”swim” called something like ”percolate” or ”bubble” or ”promote.” I think
sink/swim are the best terms I’ve come across so far (I found them in SW) because they are short, use the
same amount of space in a monospace font, and avoid ambiguity, e.g., with bubble sort. I made up the
”almost-heap broken at x” term to write down invariants for sink/swim, but it’s possible that there’s some
more-standardized terminology for this I’m not aware of.

There was a question about variants of heapsort that, like insertion sort, perform well when the heap is
near-sorted. The one I’ve heard of being used in practice is smoothsort, which Wikipedia1 describes like so:
”Like heapsort, smoothsort is an in-place algorithm [...] The advantage of smoothsort is that it comes closer
to O(n) time if the input is already sorted to some degree, whereas heapsort averages O(n log n) regardless of
the initial sorted state.” Smoothsort is used by musl libc2. (Meanwhile, glibc3 seems to use a combination of
quicksort and insertion sort. Python4 uses an algorithm called timsort5 that apparently combines mergesort
and insertion sort).

There was a question about the best-case behavior of heapsort. Knuth 5.2.3.32 is a relevant exercise:
”Prove that the number of heapsort promotions, B, is always at least 1

2N lgN + O(N), if the keys being
sorted are distinct. Hint: Consider the movement of the largest [N/2] keys.” I haven’t worked through this
exercise yet, but if you do I’d be curious to hear about it! (There are also solutions in the back if you want
a spoiler.)

1https://en.wikipedia.org/wiki/Smoothsort
2https://git.musl-libc.org/cgit/musl/tree/src/stdlib/qsort.c
3https://github.com/lattera/glibc/blob/master/stdlib/qsort.c
4https://github.com/python/cpython/blob/main/Objects/listsort.txt
5https://en.wikipedia.org/wiki/Timsort

https://en.wikipedia.org/wiki/Smoothsort
https://git.musl-libc.org/cgit/musl/tree/src/stdlib/qsort.c
https://github.com/lattera/glibc/blob/master/stdlib/qsort.c
https://github.com/python/cpython/blob/main/Objects/listsort.txt
https://en.wikipedia.org/wiki/Timsort
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Name: Stanford ID Number:

2.6.6 Lecture 7/3 Practice Quiz Question

In lecture we saw how, when the input is stored in a contiguous array, one can implement heapsort with Θ(1)
space and O(n log n) time overhead by using the input array itself to implicitly store the heap.

Explain why that approach can not be easily used if the input is stored as a linked list instead of an array,
and upper bound the worst-case time complexity of the algorithm if you tried to use the same Θ(1)-space
approach but where the input is a linked list instead of an array.
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2.7 Lecture 7/5 Notes: Comparison Lower Bounds and BSTs

2.7.1 Lower Bounds for Comparison Sorting

So far, all the sorts we’ve seen so far have one thing in common: the only thing they do with items is move
them around and compare them. We call these algorithms comparison sorting algorithms.

Definition 9. A comparison sorting algorithm is a sorting algorithm where the only operations it performs
on its input are: (1) get the number of input elements, (2) compare two elements, and (3) rearrange the
elements.

On the one hand, this is quite powerful! We can use these algorithms to sort objects by weight given
only a balance. We can sort by things that aren’t numbers, such as sorting words in dictionary order.

On the other hand, it seems like we might be leaving some information on the table. Maybe if we knew for
a fact that the objects were numbers, we could do something smarter? Numbers have prime factorizations,
etc., that we could imagine trying to make use of. But comparison sorts have no way to ‘introspect’ on the
contents of the keys. We won’t look at any of these, but it turns out there are sorting algorithms that get
better asymptotic behavior by using this information.

Sketch of the Proof

We’ll defend two claims:

1. If there exists a comparison sorting algorithm that runs in time f(n), then there exists a decision tree
for sorting n-length arrays that has depth f(n).

2. Every decision tree for sorting n-length arrays has depth at least Ω(n log n).

Turning Algorithms Into Decision Trees

Let’s think a bit more carefully about what a comparison sorting algorithm is. For a given input length n,
the only way it can learn anything about the input is by asking to compare two items.

Notice an interesting fact: the very first two items chosen for comparison are always the same, regardless
of the actual input! This fact follows because there’s no way for it to learn anything about the input before
the first comparison, so there’s no way for it to base its first comparison on any other info about the list! In
fact, the same argument tells us that, once we know the result of the first comparison, the next two items
to be compared is also fixed, and not dependent on the rest of the input at all (only on what happened in
the first comparison).

This leads us to think about comparison sorting algorithms as decision trees. Each node in the decision
tree determines two indices to compare. Its children determine the next comparison to perform, depending on
whether the result was ‘less-than’ or ‘not less-than.’ The leaves correspond to termination of the algorithm,
at which point the algorithm must know exactly how to turn the list back into sorted order.

Definition 10. A decision tree is a tree where internal nodes correspond to queries about the input and
leaves give the solution to the problem for all inputs inputs taking that branch.

Theorem 16. If a comparison sorting algorithm runs in worst-case f(n) time, then there exists for every
n a decision tree of depth at most f(n) that sorts n-length arrays.

Proof. Start with an empty decision tree and simulate the comparison sorting algorithm. Every time it
makes a comparison, add a node to the tree representing that comparison and then continue simulating both
of the possible results of that comparison in different subtrees. Whenever the algorithm returns, add a leaf
with the corresponding rearrangement.

Let’s think about the decision tree for merge sort running on 3 items, [A0, A1, A2]. What are the first
two items to be compared? It recurses on [A0] and [A1, A2], hence the first two things to be compared are
A1 and A2 during the merge call in the second recursive call. Now we’ve got two options: either A1 ≤ A2

or not. We’ll draw those as two subnodes here; let’s leave the right one empty for now and start on the left
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one. (Trace that branch down; draw the full tree; each node should include the current state of the array
and what comparisons are made.)

Notice every possible input takes exactly one branch, and all the branches terminate knowing exactly
how to sort the input. In some sense, these trees fully capture the behavior of the comparison sort algorithm.
What’s the depth? Well, it’s the number of comparisons that the algorithm would have had to make on such
an input. This is at worst the total time taken by the algorithm.

(Note we haven’t yet talked about what to do if the algorithm is randomized; we’ll mention it briefly at
the end.)

Lower Bounds on Depth

Now let’s ask an interesting question: how many leaves does the tree have? Well, notice that every n!
permutation of the list 1, 2, . . . , n must take a different branch (why? if two took the same branch then the
sorting algorithm would have to rearrange them in the same way, but then they wouldn’t be sorted!). This
means our tree must have at least n! leaves.

We now need the following lemma

Lemma 1. A binary tree with k nodes must have at least ⌊log k⌋+ 1 many levels.

Proof. By contradiction: if you had at most ⌊log k⌋ levels, the most nodes you could have is with the perfect
binary tree, which would have 2⌊log k⌋ − 1 < k − 1 < k nodes.

OK, so we have a tree with n! leaves so it has at least log n! = Θ(n log n) many levels. That looks familiar!
In fact, this proves the following theorem:

Theorem 17. Any comparison sorting algorithm requires Ω(n log n) time to sort some list of size n.

By corollary, then, merge sort and heap sort are asymptotically optimal : it’s not possible to do better,
except perhaps in terms of constant factors or if you go outside the comparison sorting mindset.

Randomized Algorithms

The above proof is a bit ambiguous about whether and how it applies to randomized algorithms like Quicksort.
The basic idea is, during the simulation, every time you make a random decision make an entirely new tree
for each possible random decision you could have made. Now you’ve turned the algorithm into many different
decision trees, one for each of the possible choices of the random decisions you could have made. But, the
earlier argument still applies to each one of these trees, i.e., no matter how the random decisions are chosen
it will still take Ω(n log n) time.

We won’t ask you to do anything like that in this class.

Noncomparison Sorting

It’s possible to break this bound if you get more info from the items other than just pairwise comparisons.
We’re not going to talk about those algorithms. In practice, algorithms like Quicksort run so fast, and the
flexibility that comes from allowing general comparison functions, makes it relatively rare that you ever see
anyone using noncomparison sorts.

2.7.2 Searching

Definition 11. The search problem is the problem of storing a set of items with the following operations:

• Insert an item into the set,

• Remove an item from the set, and

• Search for whether or not an item exists in the set.
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In fact, for all the algorithms we’ll see, they can be augmented to not just report if an item exists in
the set, but also do things like associate a different value with that item (hence making something like a
key-value map).

Applications include:

• In a compiler, when it comes across a variable name it needs to check that it’s been defined before and,
if so, where its value is stored.

• When you ask to open a certain file by name/path, your computer needs a way to make sure that file
exists and to find its contents.

2.7.3 Binary Search Trees

Definition 12. A binary search tree is a binary tree where each node is annotated with a value, and the
value of every node is:

1. Greater than (or equal to) the value of all its left-descendants, and

2. Less than (or equal to) the value of all its right-descendants.

Binary trees are usually stored with each node having a left- and right-pointer to its children. It is
sometimes also convenient to store a pointer to your parent.

The following pseudocode searches through a binary tree for a value v, inserting it if it doesn’t exist:

1 def search_or_insert(root, v):

2 if root is empty: # NOT FOUND, insert it

3 node = new node

4 node.value = v

5 replace root with node

6 return node

7 if v == root.value:

8 return root

9 if v < root.value:

10 return search_or_insert(root.left, v)

11 if v > root.value:

12 return search_or_insert(root.right, v)

We can do other things with a binary tree, e.g., find the minimum:

1 def find_min(root):

2 if root is empty: (error)

3

4 if root.left is not empty:

5 return find_min(root.left)

6

7 return root.value

We can delete a node similar to how we did with heaps: deleting a node that doesn’t have a child is easy,
so find such a node to swap with, do the swap, and then delete that node. It turns out the node you should
swap with is the smallest thing in the tree greater than yourself, because then the swap-and-delete doesn’t
violate the BST property. (There are many different ways to delete, e.g., you could swap with the largest
thing in the tree greater than yourself instead.)

1 def delete(node):

2 if node.left is empty:

3 replace node with node.right and return

4 if node.right is empty:
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5 replace node with node.left and return

6 successor = find_min(node.right)

7 swap node.value <-> successor.value

8 replace successor with successor.right and return

Implementing Linked Binary Trees

In the preceeding pseduocode, we have tried to be very agnostic to the underlying storage method. In
practice, we’ll usually use linked structures (pointers). The below C code shows how you could translate,
say, the search/insert pseudocode into C and how to use it:

1 #include <stdlib.h>

2 #include <assert.h>

3

4 struct node {

5 int value;

6 struct node *left, *right;

7 };

8

9 struct node *search_or_insert(struct node **root, int v, int do_insert) {

10 if (!(*root) && !do_insert) return 0;

11 if (!(*root)) {

12 *root = calloc(1, sizeof(**root));

13 (*root)->value = v;

14 return *root;

15 }

16 if (v == (*root)->value) return *root;

17 if (v < (*root)->value)

18 return search_or_insert(&((*root)->left), v, do_insert);

19 return search_or_insert(&((*root)->right), v, do_insert);

20 }

21

22 void main() {

23 struct node *tree = 0;

24 search_or_insert(&tree, 4, 1);

25 search_or_insert(&tree, 5, 1);

26 search_or_insert(&tree, 3, 1);

27 assert(!search_or_insert(&tree, 2, 0));

28 assert(search_or_insert(&tree, 5, 0));

29 assert(search_or_insert(&tree, 5, 0)->value == 5);

30 }

Of particular importance is that we always pass around a pointer to a pointer to a node; this is because
if, say, the tree is empty, we need to insert a new root node by overwriting the pointer to the root. We’ve
also added a flag that lets you control whether it does just a search, or a search and insertion. If you would
like to create a map instead of just a set, you can add a separate “associated value” field to the node struct.

A worthwhile practice problem would be to turn the above pseudocode into a nonrecursive form.

Worst-Case Time Complexity of BST Operations

If you insert in the order 1, 2, 3, 4, . . . , n, the total time taken will be Θ(n2). Not good!
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Average-Case Time Complexity of BST Operations

Suppose you insert in a randomly chosen permutation of 1, 2, . . . , n. What is the expected time to do
the insertion? To simplify things, just like in Quicksort, we’re only going to count comparison operations.
Whatever we insert first will be the root, requiring zero comparisons. Suppose it was i that got inserted
first, as the root. Then, every subsequent insertion will start off being compared with i, followed by either
recursing in the left subtree (i− 1 of them do this) or in the right subtree (n− i of them do this). This gives
us the following natural recurrence for the expected number of comparisons:

T (n) = (n− 1) +
1

n

n∑
r=1

(T (r − 1) + T (n− r))

which is, surprisingly, almost exactly the same recurrence we saw for Quicksort! We can solve and upper
bound it like so, using the exact same tricks from the quicksort recurrence (clear denominators, subtract
subsequent terms, and then divide to get a clean recurrence):

T (n) = (n− 1) +
1

n

n∑
r=1

(T (r − 1) + T (n− r))

= (n− 1) +
2

n

n−1∑
i=0

T (i)

nT (n)− (n− 1)T (n− 1) = n(n− 1) + 2

n−1∑
i=0

T (i)− (n− 1)(n− 2)− 2

n−2∑
i=0

T (i)

= (n− 1)(n− (n− 2)) + 2T (n− 1)

= 2n− 2 + 2T (n− 1)

nT (n) = 2n− 2 + (n+ 1)T (n− 1)

T (n) = 2− 2

n
+

(n+ 1)T (n− 1)

n
T (n)

n+ 1
=

2

n+ 1
− 2

n(n+ 1)
+

T (n− 1)

n

Sn =
2

n+ 1
− 2

n(n+ 1)
+ Sn−1 (Defining Sn :=

T (n)

n+ 1
)

=

n∑
i=2

(
2

i+ 1
− 2

i(i+ 1)

)

=

n+1∑
i=3

(
2

i
− 2

(i− 1)i

)

= 2Hn − 2H2 −
n∑

i=2

2

i(i+ 1)

≤ 2Hn

T (n) ≤ 2Hn(n+ 1) = Θ(n log n),

Where we start the second sum at i = 2 because T (1) = S1 = 0.
So it takes time Θ(n log n) to do the n randomly-ordered insertions. Not too bad.
Why is it so similar to quicksort? Well, whatever you insert first is going to be the root. You can think

of that like the first pivot you pick in quicksort. Then, any subsequent insertion smaller than that is going
to be handled by the left subtree, while any insertion bigger than that is going to be handled by the right
subtree, and the left/right subtrees don’t interact. So it’s exactly like what happens when you recurse in
quicksort.

(Maybe draw the tree and compare it to a recursion tree for quicksort.)
In fact, an analysis similar to the one you’ll do on your homework this week for Quickselect tells you

that, with very high probability, you expect the depth of the tree to be at most, say, 100 log n.
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Roadmap

We’ve seen that the standard BST insertion routine is actually not horrible, if you insert in a random order.
But in practice that isn’t a good assumption, and this näıve BST implementation will break down quickly.
So we’ll spend the next week or so learning about ways to modify this basic BST idea to guarantee that
the tree doesn’t get too deep. There are lots of ways to do this, all with their own tradeoffs (kind of like
sorting!).

2.7.4 Wrap Up

So we’ve seen:

• . . .

Now, let’s go on to the practice quiz!

2.7.5 Post-Lecture Ed Notes

Some folks were trying to work a bit more on understanding how to translate comparison sorting algorithms
into decision trees. Unfortunately, it’s a bit hard to manually draw out decision trees, especially for the
slower algorithms when you have a large input size.

So in case it helps, here’s some Python code that shows how to do this in a general way, i.e., you give
it any comparison-based sorting algorithm written in Python and it turns it into a decision tree. You could
use this either to visualize the before/after of the transformation, or if you want to dig into the code itself
you could try to see how it works. I’ve demonstrated how to use it with a few different sorting algorithms.

Interestingly, it also lets you see exactly what the built-in Python sorting function is doing!
There was a question about how to implement something like the search or insert routine we saw

pseudocode for in lecture. I indicated that you could use double pointers to translate it naturally. In the
notes for today I have included an example C program that compiles and runs and uses that approach.
Working through why it works may be instructive (let me know of any bugs if you find them!).

On the topic of the comparison sorting lower bound, there’s another way to think about the proof we saw
using entropy. Roughly, it goes like this: there are n! many possible inputs, and by the time you return from
your sorting algorithm you must know exactly which of those inputs you got. But to describe which of the
n! different inputs you are given requires log n! bits of information. Each comparison gives you at most 1 bit
of information, so it lets you peek at at most 1 bit of the log n! bits specifying what the input. Hence, you
need log n! comparisons at least. You can view the proof we saw in lecture as making this rigorous, or you
can also use the language of information theory to make this notion of ”bits of information” more rigorous
directly. Unfortunately I don’t yet have a great reference that does so in this context yet.

If you’re interested in other lower bounds, here’s a classic but still almost-approachable paper (at least
the first few pages) from Andrew Yao while he was at Stanford: https://dl.acm.org/doi/pdf/10.1145/
322261.322274

If you’re interested in reading about non-comparison-based sorting algorithms, maybe start here: https:
//en.wikipedia.org/wiki/Counting_sort and then go on to read https://yourbasic.org/algorithms/

fastest-sorting-algorithm/.
You might also be interested in sorting networks: https://en.wikipedia.org/wiki/Sorting_network

https://dl.acm.org/doi/pdf/10.1145/322261.322274
https://dl.acm.org/doi/pdf/10.1145/322261.322274
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Counting_sort
https://yourbasic.org/algorithms/fastest-sorting-algorithm/
https://yourbasic.org/algorithms/fastest-sorting-algorithm/
https://en.wikipedia.org/wiki/Sorting_network
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Name: Stanford ID Number:

2.7.6 Lecture 7/5 Practice Quiz Question

Here is the BST insertion code from lecture:

1 def search_or_insert(root, v):

2 if root is empty: # NOT FOUND, insert it

3 node = new node

4 node.value = v

5 replace root with node

6 return node

7 if v == root.value:

8 return root

9 if v < root.value:

10 return search_or_insert(root.left, v)

11 if v > root.value:

12 return search_or_insert(root.right, v)

Show the tree that results if you start with an empty tree and make the following insertions in this order:
5, 1, 2, 6, 7, 8.
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2.8 Regarding the Sorting Code

Now that we’re wrapping up sorting, wanted to post some rough + ready implementations of the different
sorting algorithms for you all to play with. I definitely suggest implementing them yourselves without looking
at anyone else’s first, but in case anyone has gotten stuck on implementing any one of them up here you go:

Some things to note:

• I added new base cases to merge and quicksort that turn the problem over to insertion sort once
the problem gets small enough. You can try tuning this cutoff for your machine. This is a pretty
common/popular implementation choice.

• Even without using insertion sort as a base case, mergesort runs about 4x faster on a sorted list than
an unsorted list on my machine! It’s interesting to think of explanations for this; the main two that I
have involve the branch predictor and the fact that a sorted list gets you more quickly out of the first,
”slow” loop in merge and into the three ”fast” loops at the end of merge. (In fact, the compiler turning
those three fast loops in the end into a 4-way vectorized memcpy would seem to perfectly account for
this speedup.)

• Heapsort is consistently the slowest out of all the ”good” sorts.

• My implementation of quicksort is often a bit slower than my implementation of merge sort, especially
on mostly sorted arrays.

• On arrays with only Θ(n) inversions, insertion sort beats my system’s standard sort function by 5–10x.

• If you increase the size to something like 1024*1024 then you start to get a slightly clearer pattern
where Quicksort clearly outperforms merge on random arrays. But at that size, it takes way to long
to run selection/insertion sort!

• The way we’re getting random numbers is actually pretty bad/not really random, see, e.g., https:
//stackoverflow.com/questions/49878942/why-is-rand6-biased for some discussion.

• Changing the optimization level and compiler produces some interesting effects too!

There’s a ton of things you could do to play around with this code, including: optimize it, try to find
bugs, try different input distributions, try sorting things bigger than integers, try implementing them for
different input types (linked lists), etc. Go wild !

https://stackoverflow.com/questions/49878942/why-is-rand6-biased
https://stackoverflow.com/questions/49878942/why-is-rand6-biased
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2.9 Week 2 Problem Sheet

2.9.1 Lecture 7/1

Quicksort and k-Selection

Problem 10: Give pseudocode showing how to modify the partition function to do a three-way parti-
tioning, i.e., partition the list into values less-than, equal-to, and greater-than the pivot. Describe how
this can be used to speed up quicksort when the array has many duplicate elements.

Hint: Hint(s) are available for this problem on Canvas.

Problem 11: (CLRS) Consider an arbitrary execution of the quickselect k-selection algorithm. Say a
partitioning during that execution is helpful if either (i) the randomly chosen pivot happens to be in the
middle 50% of the array (i.e., at least a quarter of elements are smaller than it and a quarter are larger),
or (ii) it is the last partitioning performed before the execution ends. Answer the following questions:

1. What is an upper bound on the expected number of partitionings before a helpful partitioning
occurs?

2. Let n be the original number of elements in the list and suppose there are m helpful partitionings.
Define X0 to be the number of partitionings up to (and including) the first helpful partitioning,
X1 the number of partitionings after that up to (and including) the second helpful partitioning,
etc. Prove that the total time taken by this execution of quickselect is at most Cn

(∑m
i=0 Xi0.75

i
)

for some constant C.

3. Prove that the expected time for quickselect is Θ(n).

Hint: Hint(s) are available for this problem on Canvas.

2.9.2 Lecture 7/3: Heaps, heapsort, Sorting Stability

Heaps

Problem 12: In lecture, we only saw relatively high-level pseudocode for the heap operations and for
heapsort. This is because we tried to be agnostic to how the heap was implemented, only at the very
end discussing how you could implement it as a single contiguous array.

Rewrite the pseudocode from lecture to explicitly operate on a heap stored in a contiguous array.
(It’s up to you how detailed you want to get with this, but I suggest going all the way and implementing
an executable version of heapsort in Python.)

Hint: Hint(s) are available for this problem on Canvas.

Problem 13: Recall in lecture we showed how to create a heap from an arbitrary binary tree by
repeatedly sinking nodes on the last layer, then the second last, etc.

Answer the following questions, under the additional assumption that the initial binary tree is perfect,
meaning every layer is fully filled in with nodes.

Hint: Hint(s) are available for this problem on Canvas.
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Problem 14: (SW) Design an algorithm to merge k distinct sorted lists, for any integer k. If across
all the k lists there are a total of n elements, your algorithm should take time O(n log k).

Now, use this primitive to explore the concept of a k-way mergesort algorithm, where you split the
array into k chunks rather than in half. What is the running time of this k-way merge sort, in terms of
both k and n? What happens in the extreme case when you pick k = n?

Hint: Hint(s) are available for this problem on Canvas.

Problem 15: Compare heapsort to the Θ(n log n) variant of selection sort from the first homework.

Problem 16: Revisit all the sorting methods we’ve learned so far (selection, insertion, merge, quick,
heap). Which of them are stable sorts? For the ones that are stable, describe a typo some careless pro-
grammers might make in their implementation that would make it no longer a stable sorting algorithm,
even though it still sorts. For the ones that are not stable sorting algorithms, determine whether there
is a simple “fix” to make any of them stable and explain any tradeoffs that come with your fix.

2.9.3 Lecture 7/5: Comparison Lower Bounds, Intro to Searching + BSTs

Problem 17: Consider the following highly unreasonable, but pedagogically useful scenario: you wish
to write a program to find the user’s ranking of ice cream flavors, but the user isn’t able to keep track
of all n items at once. Instead, the most you can ask of them is to pick their favorite ice cream flavor
out of

√
n possibilities (where the possibilities are chosen by you). Answer the following questions:

1. Prove a lower bound on the number of such questions you have to ask the user.

2. Prove that lower bound is tight by describing an algorithm with that number of queries (it’s fine
for this to be asymptotically tight, i.e., to just have the same big-Theta).

3. Repeat your lower bound analysis, but for the case where you get not just their favorite, but their
ranking of those

√
n flavors.

4. Does your lower bound in part (3) necessarily imply there exists an algorithm with that worst-case
number of rankings?

Hint: Hint(s) are available for this problem on Canvas.

Problem 18: (This is an intentionally open-ended question, and different students will go different
directions with it. Hence, we probably won’t be able to give as much conccrete guidance on this problem
in OHs compared to other problems.)

We’re about to embark on a two-plus week exploration of the search problem, which involves storing
a dynamically updated set of items supporting insertion, deletion, and search operations. Research,
then compare and contrast the following simpler ways of storing such a set:

1. Contiguous array (ordered or unordered),

2. Singly linked list (ordered or unordered),

3. Doubly linked list (ordered or unordered).

For each one, you might think about the average, best, and worst-case time complexity for each
of the three operations (insert, delete, search). For practice, I suggest computing exact average case
times. You can also think about questions like, how much extra memory is used? What assumptions do
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you need to make about the elements being stored? Other topics you might want to research include:
interpolation search, intrusive linked lists, sentinel nodes, and the xor trick for doubly linked lists.

Problem 19: Given any BST T containing the numbers 1, 2, . . . , n, prove that there exists some
reordering of 1, 2, . . . , n where, if you Insert the numbers in that order using the BST insertion routine
seen in lecture, it creates the BST T .

Hint: Hint(s) are available for this problem on Canvas.

Problem 20: (This problem is significantly more involved than others on this problem set; we suggest
leaving it for last and referring to the hints on Canvas if we don’t cover rotations on Friday.)

In some (vague) sense, binary search trees mostly make use of the left-to-right direction (your left
descendants must be less than you, who must be smaller than your right descendants). By contrast,
max heaps only really make use of the up-or-down direction (your parent must be bigger than you). In
this problem, we’ll show how to combine the two and use it to create a very simple balanced tree.

Suppose instead of storing individual items in each node, you want each node to store a pair of
items. We’ll represent a pair as an object, e.g., x, with two fields, x.a and x.b.

Show how, if you give up on balancing the tree, you can store a dynamically updating set of pair-
objects x1, x2, . . . , xn with the following properties:

1. The binary tree should form a binary search tree with respect to the a field, namely: If x appears
in the left (right) subtree of y, then x.a ≤ y.a (x.a ≥ y.a).

2. The binary tree should form a heap with respect to the b field, namely, if x is an ancestor of y,
then x.b ≥ y.b.

Your answer should describe algorithms for inserting and removing items from this tree, and you should
describe the worst-case running time in terms of the depth of the tree. (The data structure you will
likely reinvent is called a Cartesian tree.)

Then, answer the following questions:

1. In class, we saw that inserting 1, 2, . . . , n in a random order led to a good expected balance.
Suppose you inserted the objects x1, x2, . . . , xn, where xi.a = i and xi.b = i, into your Cartesian
tree in a random order; what would the expected depth of the tree be? Compute the exact
probability that your tree has that depth.

2. Suppose you implement a binary search tree in the following way:

(a) Whenever the user requests to insert a value k into the BST, generate a random number r
and insert the object x with x.a = k and x.b = r.

(b) BST deletion is the same as your Cartesian tree deletion.

What can you say about the balance of the resulting tree? What can you say about the expected
running time of the BST operations? (This data structure is known as a treap.)

Hint: Hint(s) are available for this problem on Canvas.
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2.10 Study Guide for First Quiz (Sorting)

While we don’t expect any changes, everything in this document is tentative and subject to change by an-
nouncement from the instructor.

Topics

The following topics are in-scope:

1. Working rigorously with the definition of O(. . .), and working informally (but correctly) with Θ(. . .)
and Ω(. . .).

2. Meaning of worst-case, best-case, average-case, and expected-case algorithm analyses.

3. Selection sort, insertion sort, merge sort, quicksort, quickselect, and heapsort.

4. Divide-and-conquer design technique and analyses.

5. Decision trees and the comparison sorting lower bound.

In particular, the first quiz will not ask about loop invariants or BSTs, but you should be comfortable
doing correctness proofs for recursive functions without loops (like the mergesort correctness proof from
lecture, assuming without proof the lemma that merge is correct).

Having done the homework questions might be useful in answering quiz questions, but we will write
the quiz assuming you haven’t done the homework, so you don’t have to memorize, e.g., the definition of
inversions, if you don’t want to.

Question Templates

While there may be a few exceptions, we’ll try to stick to the following question templates for the quiz:

1. Some kind of big-O practice problem that involves expanding definitions and applying 103 proof tech-
niques, e.g., prove “if f(n) = O(g(n)) and g(n) = O(k(n)), then f(n) = O(k(n)).” (See week 1
homework problem 1.1.)

2. Question(s) proposing a slight modification to one of the algorithms we’ve seen in lecture, then asking
things like: Is it still correct? What is the effect on (best or worst or average or expected) running
time? (See the 6/24 lecture extra credit.)

3. Question(s) where some type of input is described and we ask things about the behavior (e.g., running
time) of a particular algorithm on that type of input. (See the 6/26 lecture extra credit).

4. Some kind of algorithm design problem using divide-and-conquer. (See the 6/28 lecture extra credit.)

5. At most one question where you will have to reproduce essentially the comparison sort lower bound,
except in a different setting and/or with a different branching factor. (See the week 2 homework
problem for that lecture.)

6. Question(s) proposing a scenario and then asking you to compare + contrast different sorting algorithms
for that scenario. E.g., if you are running on an embedded device with limited memory, would heapsort
or mergesort be a better choice? (See week 2 homework for the heapsort lecture.)

Questions will be easier than the average homework question, and probably a little bit harder than the
average post-lecture EC credit. The motivation for having so many questions is to ensure that no one
question has an outsized impact on your grade.
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Chapter 3

Searching

3.1 Lecture 7/10 Notes: AVL Trees

Nice job everyone on the exam. We’ll try to get it graded by this weekend, and I’ll try to get a solution
manual together by Friday. I sampled some of the exams and it seems like overall people did great!

Let’s continue our exploration of binary search trees.

3.1.1 Warning about binary tree pseudocode

Note that with binary trees there are lots of different ways to implement them and even more ways to
implement operations using them. If you’re curious, the BST lecture notes have a C implementation of
search/insert that I quite like using double pointers. But you can do the same thing without double pointers.
Some BST operations become easier if you have a parent pointer, but that takes extra space. And for many
of the operations we’ll see today, it’s a lot easier to understand by seeing diagrams rather than a list of
complicated pointer manipulations.

So, when we talk about BSTs, we’re usually going to use pretty high-level pseudocode. Basically, the
rules we’ll try to follow are:

1. Operations that require iterating through more than a finite number of pointer operations will be
shown explicitly via recursion or a for loop, but

2. Operations that involve reading from a modifying a finite/bounded number of nodes we’ll explain in
words and/or pictures.

One example was the BST search/insertion routine from Friday: the searching part was shown explicitly
via recursion, but the actualy hooking things together was just written down, not told explicitly how to
manipulate the pointers.

3.1.2 Tracking Height With BST Insertion

Let’s do a little warmup exercise here: tracking the height of each node in a tree while you insert into the
tree. You basically do the normal BST insertion, except now you update the heights on the way up.

First, let’s look at a more general BST insertion routine that lets us do things “on the way up:”

1 def search_or_insert(root, v):

2 if root is empty: # NOT FOUND, insert it

3 node = new node

4 node.value = v

5 replace root with node

6 postinsert(node)

7 return node

61
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8 if v == root.value: return root

9 child = root.left if v < root.value else root.right

10 node = search_or_insert(child, v)

11 postinsert(root)

12 return node

Now, what should we do on the way up? Every node visited might have had its height change, so we’ll
update the height:

1 def postinsert(node):

2 # CONVENTION: height of empty node is zero

3 node.height = 1 + max(node.left.height, node.right.height)

3.1.3 AVL Balance

On Friday we saw that pretty much all the operations we wanted to do on trees required traversing the tree
from the root down to some node, hence their time was bounded by the number of nodes in the tree. So
ideally we’d like to keep our BSTs complete, like with heaps! Unfortunately, it’s pretty hard to do that; in
fact, on the homework you’ll prove that, if you want to do insertions while maintaining the completeness of
a BST, you need to do Θ(n) work in the worst case.

In this lecture we’re going to study AVL trees, which require something a lot weaker than completeness,
but which still turns out to be good enough to get us our O(log n) bounds. The definition of balanced we’ll
use is as follows:

Definition 13. A binary tree is AVL balanced if at every node the height of the left subtree is at most ±1
the height of the right subtree.

We call an AVL balanced BST an AVL tree.

(Fun fact: according to Wikipedia, AVL is actually only two people, Georgy Adelson-Velsky and Evgenii
Landis!)

When talking about complete heaps, we noted that a complete tree has the nice property that its depth
is O(log n). In fact, AVL trees have the same property!

Theorem 18. An AVL tree with n nodes has depth O(log n).

Proof. (Adapted from TAOCP) We’re going to start by flipping the problem on its head and ask the following
question: what’s the fewest number of nodes we can put in an AVL-balanced tree of height h?

Well, call that number Ch and pick, for each h, a tree Th “witnessing” it. Now, the tree Th must
have either its left or right subtree be depth h − 1. WLOG assume it’s the right subtree, and notice if it’s
anything other than Th−1 we can replace the right subtree with Th−1 without increasing the number of nodes
or affecting the AVL balance property of the whole tree. Similarly, if the left subtree is anything other than
Th−2 we cane replace it with Th−2. So, in other words, we have the recurrence:

Ch = 1 + Ch−2 + Ch−1.

with base cases C1 = 1 and C2 = 2. This is very similar to the Fibonacci sequence, and in fact, you can
pretty much complete the analysis here if you know the closed-form solution for the Fibonacci sequence. But
that’s a bit outside the scope of this class, so let’s see an alternative way to get a bound on Ch.

What we’re going to do is describe two more sequences, C ′
h and C ′′

h , where it will be easy enough to see
the following chains of inequalities:

Ch ≥ C ′
h ≥ C ′′

h ≥ 2⌊h/2⌋.

Namely, first take C ′
h to be defined by the same base cases and the recurrence

C ′
h = C ′

h−2 + C ′
h−1.
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We can see that Ch ≥ C ′
h because all we’ve done is removed some additions from the ultimate sum (you

can prove this more rigorously by induction). Then, take C ′′
h to be defined by the same base cases and the

recurrence
C ′′

h = C ′′
h−2 + C ′′

h−2 = 2C ′′
h−2.

You can prove by induction that C ′
h ≥ C ′′

h . Handwaving, the reason is that C ′′
h is increasing, so replacing

C ′′
h−1 with C ′′

h−2 only makes the sum smaller.
Finally, the substitution method shows us that, at least when h = 2k,

C ′′
h = 2C ′′

h−2

= 22C ′′
h−2(2)

= 23C ′′
h−2(3)

...

= 2k−1C ′′
2

= 2k.

So now following the chain of inequalities, we’ve seen

Ch ≥ 2⌊h/2⌋.

Cool! So what we’ve shown is that an AVL tree of height h has at least
√
2
h

nodes (modulo round-
ing/assuming h is even).

Suppose for sake of contradiction some AVL-balanced tree has n nodes but more than log√2 n height.

Well, because it has more than log√2 n height, it must have more than Clog√
2 n =

√
2
log√

2 n
= n nodes,

which is a contradiction. Hence, by contradiction we see that AVL trees have height O(log n).
(For ease of exposition we’ve glossed over corner cases here and above when n is not a power of

√
2; this

situation is similar to how we assumed the input was a power of two in the analysis of merge sort. We’ve
also not explicitly shown that Ch is strictly increasing, nor have we shown rigorously that C ′′

h ≤ C ′
h ≤ Ch.

All of those steps can be proven more rigorously by induction.)

Now, there’s a lot of other definitions of balance we could have looked at, and you’ll see some on the
homework. But it turns out AVL balance is a very natural one in part because of the connection to the
Fibonacci numbers and also because insertion can be done very efficiently while maintaining AVL balance
(as we’re about to see!).

3.1.4 Manipulating BSTs

In heapsort, the key operation we used to fix up a heap was to swap a child node with its parent. In BSTs,
the key operation we’ll use over and over again is the rotation. There are two fundamental rotations, the
left rotation and the right rotation. They can be seen below:

D

B E

A C

Rotate Right

Rotate Left

B

D

EC

A

Notice that the nodes have changed positions, yet they stay in the same relative order! So the left and
right rotations preserve the BST property while changing its shape.

In fact, you’ll see on your homework that these two operations are actually very special; we didn’t just
pick them arbitrarily. They’re special because using just these two operations, you can make any other
BST-property-preserving modification to the tree you want!



64 CHAPTER 3. SEARCHING

3.1.5 AVL Insertion

Now, suppose you have an AVL-balanced tree and you go to insert a node. The resulting tree is not necessarily
AVL-balanced any more! So, on the way back up from the insertion, you need to check whether it’s balanced
and fix it up if it’s not:

1 def postinsert(node):

2 # CONVENTION: height of empty node is zero

3 node.height = 1 + max(node.left.height, node.right.height)

4 if abs(node.left.height - node.right.height) > 1:

5 determine which case the tree falls into

6 perform either 1 or 2 balancing operations

7 update the heights

To fix it up, there are a lot of different cases. We’re not going to explicitly think through all of them,
although we will think through the two “unique” ones (the rest are essentially the same, just symmetric over
left/right). Knuth gives diagrams for both. Basically, in one of the cases you need a single rotation. In the
other case, you need a double rotation.

The rotations can be summarized as follows:

1. If the insertion happened “to the right of the right of the unbalanced node” (a “zig-zig”), just rotate
at that unbalanced node to bring the inserted item towards the root by one.

2. If the insertion happened “to the left of the right of the unbalanced node” (a “zig-zag”), rotate the
inserted item to the root twice, once at the child of the unbalanced node and once at the unbalanced
node itself.

There are a number of symmetric cases to consider, but those two cases give the core idea.

Something interesting to notice: in either case, the tree after the rotation now has the same height it did
before! So once you do a rotation, you actually don’t need to update heights or do any more rotations on
the way up (but it doesn’t really hurt asymptotically to do so). This raises a bit of a mystery which is, how
does the height of the tree ever grow then?? (Answer: it grows in the other cases, when we don’t need to do
a rotation at that node because the balance factor hasn’t gotten too far off.)

3.1.6 Time Complexity for AVL Trees

AVL trees require us to visit each node on the way back up. On each of those we do at most a constant
number of rotations (in fact we do at most two total!). So in total we do at most a constant number of
operations per insertion more than the normal BST insertion, so it’s still O(depth).

But thanks to the very first theorem we saw, we know that the depth of an AVL tree is always O(log n),
so our operations take time O(log n)! (Recall for AVL tree’s we’re only going to see search/insert, but you
can also do delete in O(log n) time — that’s out of scope for this class.)

3.1.7 Memory-Efficient AVL Trees

It’s a bit unfortunate that the AVL tree data structure requires us to use up a whole extra field on all our
nodes for the height. Turns out, you don’t actually need to know the height! You can just store the balance
factor of the node, i.e., the difference between its right and left subtree heights. Then, on the way back up,
you keep track of the height of the node you’re currently at and add or subtract the balance factor to figure
out the height of the other node.

There are only 3 possible balance factors, so storing it requires only 2 bits. It turns out on almost all
modern computers pointers actually only use up, say, 48-bits of the 64-bit word size. So you can use up 2
of the unused 16 bits in one of the child pointers to store the balance factor, which essentially makes AVL
trees ‘space free.’
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3.1.8 Deletion in AVL Trees

We’re not going to talk about deletion in AVL trees, but apparently it’s possible (just a lot more casework).
One interesting thing about AVL tree deletion is that you may have to do Ω(log n) rotations in the worst
case, so it doesn’t have the surprising property of insertion that O(1) rotations are required.

3.1.9 Post-Lecture Ed Notes

Also, just want to reiterate that by far the best resource I know of for this is Knuth 6.2.3. We basically
covered the first 3–4 pages of that chapter in lecture. Ah, and it’s worth noting that Knuth calls them just
”balanced” trees, whereas we refer to them as ”AVL trees” or ”AVL-balanced BSTs.” I think the latter
terminology is much more common, since there are many different notions of ’balance’ for binary trees.

There was a question about doing the AVL insertion without using Θ(log n) extra space for the call stack.
See below for a better way to do this, but I described briefly one hack to accomplish this by ”turning the
pointers around” as you go down the tree. If you’re interested in learning more about it, I learned the hack
from Knuth 2.3.5, where he uses essentially the same idea for garbage collection when going from Algorithms
B/C to Algorithms D/E (this sort of space saving is especially important in the context of garbage collection
because you can’t assume the heap graph is shallow, and also you generally only garbage collect when you
run out of space so your garbage collector should try to avoid requesting even more space!!).

There was a question about what should happen if there are multiple sources of unbalance. This cannot
happen if you’re only inserting a single item into an AVL tree. But if you have a totally unbalanced BST
that you then want to turn into an AVL tree, you may run into such a case. One thing you could do, if
your starting tree is a BST, is read all the items off in sorted order then use the result of Problem 5 on this
homework to insert them into an AVL tree in time O(n). It seems likely to me that you could also do a
heapify-like approach, where you fix the tree in a bottom-up fashion, or first find the median and bring it to
the root, etc. But I haven’t thought through those approaches. If you come up with something that works,
feel free to post about!

We said briefly that if you know the closed form solution to the Fibonacci sequence, then you can more
directly get the bound we needed for Ch. Wikipedia has a nice description of how to derive that closed-form
solution here: https://en.wikipedia.org/wiki/Fibonacci_sequence#Relation_to_the_golden_ratio

Meanwhile, Knuth 1.2.8 derives the same relation using generating functions. So feel free to check those out
if you’re interested! I think that approach gives you a slightly tighter bound than the

√
2
n
that we saw; the

bound you get from the Fibonacci sequence should be ϕn where ϕ ≈ 1.6 vs. our result with
√
2 ≈ 1.4.

Unfortunately, one issue with the reduce-to-Fibonacci-sequence approach is I’m not sure how to use it to
understand the weakened variants of AVL balance, e.g., as you’ll do in HW Problem 3 (whereas I think the
approach we saw in lecture does work for those).

Oh BTW: I think the hack I described for avoiding the O(log n) space overhead is really overkill; you can
observe that, during the first pass down the tree, you know exactly whether or not that node will become
unbalanced after doing the insertion. So you just need to keep track of the last such node encountered on
the way down, and jump back up there after the insertion to do the rotations (then you can do another
pass down from there to fix up the heights). I believe something like this is what Knuth’s algorithm does; if
you’re interested in this question I highly recommend studying his algorithm A in 6.2.3.

Oh, and since this recursion-requires-stack-usage-only-sometimes thing keeps coming up, wanted to link
this here: https://en.wikipedia.org/wiki/Tail_call which explains why the compiler can turn recursion
into loops in some specific scenarios but not others.

https://en.wikipedia.org/wiki/Fibonacci_sequence#Relation_to_the_golden_ratio
https://en.wikipedia.org/wiki/Tail_call
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3.1.10 Lecture 7/10 Practice Quiz Question

Part 1: Circle the BST below that is an AVL tree, and explain why the other isn’t.

5

2

1 3

7

9

5

2

1

7

10

9

Part 2: For the one that is an AVL tree, show the result of inserting 8 using the AVL insertion procedure
we saw in lecture. If multiple rotations are needed, clearly draw what the tree looks like after each rotation.
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3.2 Lecture 7/12 Notes: 2–3 Trees, B-Trees, and Red-Black Trees

3.2.1 HW2 Reflection Thoughts

Lecture:

• Seems like lectures are getting a bit harder for people, but still an OK pace. Definitely suggest coming
to OHs.

• try to get a study guide for quiz 2 out earlier

• continuing issues with recurrence relations, and the comparison sorting lower bound

• stability could have used more time dedicated to it, especially with examples.

• pseudocode starting to get harder

HW:

• people liked the suggested problems

• seems like this HW was a bit harder, but still within the range of reasonableness. will try to keep it
here, at least for the ’suggested’ problems.

• people liked the more concrete pseudocode/code problems

3.2.2 Lecture 7/12 Notes: 2–3 Trees, B-Trees, and Red-Black Trees

There are three closely connected types of trees that people often talk about:

1. Red–black trees,

2. 2–3 trees, and

3. B-trees.

Roughly speaking, 2–3 trees are a special type of B-tree and red-black trees are just a special way of
representing 2–3 trees. So today we’re going to focus on 2–3 trees, which will give us the most bang for our
buck, i.e., after learning about 2–3 trees you should be ready to understand both red–black trees and B-trees
with little help.

Remember from the HW we have this issue that we can’t do a BST with perfect, or even complete,
balance. AVL trees got around this by weakening the balance requirement to just AVL balance. 2–3 trees
are going to get around this by requiring perfect balance, but weakening the binary requirement of BSTs!

3.2.3 2–3 Trees

Definition 14. A 2–3 tree is a perfectly balanced tree where: every node has 1 or 2 values, every non-leaf
node has one more child than values, and it satisfies the generalized search tree property (draw it).

In the lecture notes we’ll draw 2–3 trees like so:

5;11

1

0 2;3

7;9

6 8 10

15

13 17;18

We call every node with two keys a 3-node, because they ‘should’ (excluding the leaves) have three
children. Meanwhile, we call the other nodes 2-nodes because they ‘should’ have two children. (During
certain operations, we’ll also end up temporarily breaking the 2–3 tree properties by introducing 4-nodes which
have three keys and four children, but we’ll split those into 3- or 2- nodes before finishing the operation.)



68 CHAPTER 3. SEARCHING

3.2.4 2–3 Tree Search

Search is basically unmodified from normal BST search, except now we need to pick one from at most 3
possible children to recurse in rather than 2.

1 def search(root, v):

2 if v is a value in root:

3 return root

4 if root is empty or leaf:

5 return NotFound

6 child = (find child for value v)

7 return search(child, v)

3.2.5 2–3 Tree Insertion

Insertion is where things get more complicated:

1 def insert(root, v):

2 if v in root.values: return

3 if root is empty:

4 replace root with new leaf node

5 if root is leaf:

6 add v to root.values

7 else:

8 child = (find child that v must be in)

9 insert(child, v)

10 if child split:

11 absorb it into root

12 if root is now a 4-node:

13 split it

We do the normal thing of finding where the value ‘should’ go, except now we stop at a leaf and just add
the value to that leaf. If the leaf was a 2-node, we can stop: all we’ve done is turn it into a 3-node, but the
tree stays a perfectly balanced 2–3 tree.

On the other hand, if the leaf was a 3-node and so now became a 4-node, we somehow need to fix this.
We can fix this by splitting the node into three separate nodes. For example, if we wanted to insert 19 in
the tree before, we would first do an insertion at the leaf, making a 4-node:

5;11

1

0 2;3

7;9

6 8 10

15

13 17;18;19

Then we would split that 4-node into three 2-nodes:

5;11

1

0 2;3

7;9

6 8 10

15

13 18

17 19
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But now the tree is unbalanced! To fix that up, we can absorb the 2-node we just created (18) into its parent
on the way back up the tree:

5;11

1

0 2;3

7;9

6 8 10

15;18

13 17 19

Which produces a perfectly balanced 2–3 tree, as desired!

Note that, if the parent node was already a 3-node, this absorption would cause an issue because it would
create a 4-node at the parent. But this can be handled by doing the exact same thing to the parent: split
it into three 2-nodes, then absorb the middle one of those into its parent (the root).

To see this, consider first inserting 20, which requires no split/absorbs:

5;11

1

0 2;3

7;9

6 8 10

15;18

13 17 19;20

Then inserting 21, which will trigger multiple operations as shown below:

5;11

1

0 2;3

7;9

6 8 10

15;18

13 17 19;20;21

5;11

1

0 2;3

7;9

6 8 10

15;18

13 17 20

19 21

5;11

1

0 2;3

7;9

6 8 10

15;18;20

13 17 19 21

5;11

1

0 2;3

7;9

6 8 10

18

15

13 17

20

19 21
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5;11;18

1

0 2;3

7;9

6 8 10

15

13 17

20

19 21

11

5

1

0 2;3

7;9

6 8 10

18

15

13 17

20

19 21

One interesting thing to note here is that 2–3 trees always grow “at the root”, whereas BSTs like AVL
trees first grow at the “leaves” and then intermittently rotate those leaves up towards the root.

3.2.6 2–3 Tree Deletion

Deletion in 2–3 trees is a bit harder than insertion. I think Knuth doesn’t really cover deletion for 2–3 trees,
so our decision is to not require knowing 2–3 tree deletion for exams. But, the ability to store a set or map
with guaranteed O(log n) insertion, search, and delete is so important to so many different applications, I
think it’s worth walking through how to do it so you can say you’ve seen it at least once/you know people
aren’t making this up!

On one of the HW problems you’ll see a really clever way to do deletion via a special splitting operation.
But for now we’re going to take a more direct approach. Also, as in SW, instead of showing full deletion
we’re going to show delete-min. This makes the problem a little bit simpler because we know the min is all
the way along the leftmost branch of the tree, and that it’s in a leaf. Deleting an arbitrary value is almost
the same procedure, except that you might have to switch right/left if you take a different branch, and you’ll
have to do the swap-with-successor trick to make sure you’re always deleting from a leaf.

Without further ado, here’s some pseudocode:

1 def delete_min(root):

2 if root is a 2-node:

3 squash or rotate to make it a 3- or 4-node

4 if root is leaf:

5 remove minimum value from root

6 else:

7 delete_min(root.left)

8 if root is a 4-node:

9 split it

10

The basic observation is this: if the leaf we’re deleting from is a 3-node, then we can just remove the
value and everything is fine (all we’ve done is change it to a 2-node). But if it’s a 2-node that we’re deleting
from, suddenly that node would now become empty, messing with the perfect balance of the tree. So, on the
way down to that node, you should manipulate the tree so that every node is always at least a 3-node before
recursing on it (you may need to make the root a 4-node, but all the others should be fine). Then, on the
way back up, you may find that the root is still a 4-node, in which case you can split it back into 2-nodes.

Sedgewick and Wayne give a few cases that are needed for this. I think they all boil down into the
following two:

• (The Squash) If your first two children are 2-nodes, squash them together with your smallest value to
create a 4-node. (Note if you are the overall root, this may shrink the height by 1.)
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• (The Rotate) If your left child is a 2-node but its immediate sibling is a 3-node, you can “borrow” the
smallest value from the right child, use that to replace your smallest value, and then give your smallest
value to your left child. Note that the child pointers need to change a bit too. This process is very
reminiscent of rotating a BST.

Note that none of these operations ruin the balance of the tree. The only thing that might happen is your
root might become a 4-node, but we can split that at the very end if it’s still there.

This is easiest to see with an example. Consider this tree, which is very similar to the one we saw above:

11

5

1

0 2

7;9

6 8 10

18

15

13 17

20

19 21

Suppose we wanted to delete the min (zero) from this tree. The root is a 2-node, so we first need to use
one of the operations to make it into either a 3- or 4-node before continuing. In this case, the operation that
works is to squash the first two layers together into a big 4-node:

5;11;18

1

0 2

7;9

6 8 10

15

13 17

20

19 21

making a 4-node root.
Now, before we recurse onto the node 1, we need to make it a 3-node. To do this, we can do essentially

a rotation which allows it to “borrow” the 7 from its sibling; really, the parent borrows the 7 and then the
node in question borrows the 5 from the parent.

7;11;18

1;5

0 2 6

9

8 10

15

13 17

20

19 21

Now we can recurse into the 3-node “1;5.” Before recursing to the leaf 0, we need to make it into a
3-node. Here, we can’t borrow from the sibling (2) because it’s a 2-node. What we can do is squish 0 and 2
together after taking the value 1 from their parent, making a 4-node:

7;11;18

5

0;1;2 6

9

8 10

15

13 17

20

19 21

Finally, we can now recurse into the 0;1;2 leaf and delete the min:

7;11;18

5

1;2 6

9

8 10

15

13 17

20

19 21
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On the way back up, we may run into some 4-nodes that we created. To handle them, you essentially
unsquash, i.e., reverse the operations you did that created them in the first place.

11

7

5

1;2 6

9

8 10

18

15

13 17

20

19 21

3.2.7 Generalizing to B-trees and Red-Black Trees

At the start, we said once you understand 2–3 trees you can easily understand both B-trees and red-black
trees. We’re going to briefly explain these here. For an exam, we don’t expect you to know anything about
B-trees, but we do expect you to know how to convert between 2–3 trees and red-black trees.

B-trees

A B-tree is just like a 2–3 tree, except instead of 2–3, it’s a “⌈t/2⌉–⌈t/2⌉+ 1–· · · –t” tree. For any choice of
the parameter t ≥ 3 you can write down similar insertion and deletion algorithms to the above. Note there
is some disagreement among authors about the exact definition of a B-tree, e.g., some people only accept
2–3–4 trees as B-trees, not 2–3 trees. But those differences are not particularly important.

Red-Black Trees

You can think of red-black trees as exactly the same as a 2–3 tree, except with a clever way of storing the
2–3 tree as a colored binary tree. Specifically, we split every 3-node into two 2-nodes, and then color the
first of those 2-nodes red to indicate that it should be interpreted as “squished together with” its parent.

It is easy to visualize like so. Suppose we start the following 2–3 tree:

5;11

1 7;9 15

We can split the 3-nodes using horizontal edges. If we do this to the root we get:

5 11

1 7;9 15

(Note there is some ambiguity here about whether to give the middle child to the left or to the right; we’re
going to use left-leaning red-black trees, which will always give the node to the left.) If we do this again to
the 7;9 node, we get:

5 11

1 7 9 15

(Note here again there was ambiguity about whether to point 5 to 9 or 7; in a left-leaning red-black tree
we’re always going to point the parent to the rightmost node in such a horizontal group.) Finally, if we are
careful to color the left-side nodes in each horizontal edge a special color (red), then we can “let all the edges
fall” while being able to recover the original tree:
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11

5

1 9

7

15

This process then gives us a colored BST that contains exactly the same info as the original 2–3 tree. To
recover the original 2–3 tree, you just collapse the red nodes into their parents to create 3-nodes. In fact,
because every RB tree is equivalent to a 2–3 tree, you can rewrite the 2–3 tree operations (insertion, deletion)
to work on RB trees! The situation here is pretty similar to how you can do heaps on contiguous arrays for
heapsort. But for the sake of this class, all that we want you to be able to do is (1) convert between 2–3
trees and RB trees, and (2) do insertions on 2–3 trees.

3.2.8 Post-Lecture Ed Notes

Fun fact I forgot to mention: Sedgewick (of SW fame!) co-invented the red-black tree!
For 2-3 trees and red-black trees, the reference we’re going to use is Sedgewick and Wayne (though Knuth

also has pretty good coverage of this). In particular, I wouldn’t suggest using CLRS for this.
There was a question about why one would use red-black trees over AVL trees. After doing some Googling,

it seems like the answer is very complicated. You might start reading here: https://cs.stackexchange.

com/questions/41969/why-are-red-black-trees-so-popular Overall, it seems like B-trees (with much
larger max branching factor than 3) are by far the best performing, but they’re a bit problematic because
you have to move values around a lot so they’re difficult to predict how iterators will invalidate and also
you can’t do intrusive B-trees. Between AVL and RB trees, it seems like there are a lot of tradeoffs between
search, insert, delete time. At that point, it’s probably easiest to just try both in your application and see
which is best. Worth noting that GCC’s std:map seems to be implemented as an RB tree.

If you finish problem 6 and are looking for a challenge, try repeating problem 6 but instead of requiring
the tree be complete, require it be just ”full”, i.e., every layer except the last is completely filled in (but it’s
OK for the last layer to not have all its nodes on the left). The approach in the hint doesn’t work any more,
but it would be nice to see either another such bound showing it’s not possible to maintain fullness, or an
algorithm that does insertions in O(log n) time while maintaining fullness. (I don’t know the answer !)

https://cs.stackexchange.com/questions/41969/why-are-red-black-trees-so-popular
https://cs.stackexchange.com/questions/41969/why-are-red-black-trees-so-popular
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3.2.9 Lecture 7/12 Practice Quiz Question

Draw the result of inserting 10 into the following 2–3 tree.

9;20

2

1 4

15;18

13;14 17 19

22

21 23
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3.3 Week 3 Problem Sheet

Some of these problems require you to draw trees. You’re welcome to do this in LATEX (check out the
forest package) or you can hand-draw them and add photos of your drawings to the LATEX document using
includegraphics.

3.3.1 Lecture 7/10

Tree Rotations and AVL Trees

Problem 21: Prove that the two rotation operations we saw in class (left and right) are complete,
meaning, any valid BST T1 storing the numbers 1, 2, . . . , n can be turned into any other valid BST T2

storing the same numbers using only a sequence of those two rotation operations.

Hint: Hint(s) are available for this problem on Canvas.

Problem 22: (Adapted from SW) Write a recursive procedure to check whether a given binary tree
is an AVL tree (both a BST and having the AVL property). It should have total time complexity
proportional to the number of nodes in the tree and use extra space proportional to the depth of the
tree. You can assume the tree has no duplicates, but you cannot assume that nodes in the tree are
annotated with their height (you need to compute the height).

Problem 23: Consider weakening the definition of an AVL tree to the following: for any node, the
height of the left subtree is within ±k of the height of the right subtree, for some constant k ≥ 1. Prove
that any such tree with at most n nodes never has depth larger than O(log n).

Problem 24: Which of the following is an AVL tree? Explain your answer. For any of the below that
is an AVL tree, show the result of inserting 40, 20, 30, and then 10, in that order.

5

2

1 3

7

8

5

2

1

7

9

8

Problem 25: (Knuth 6.2.3.21) (This problem is more difficult than it looks; I suggest finishing other
problems before starting it.) Suppose your user is giving you an increasing sequence of numbers x1 <
x2 < x3 < · · · one-by-one. Describe an algorithm for accepting each number and maintaining an AVL
tree on the entries seen so far. Every time you are given a new number your algorithm should do O(1)
work. At any point in time, the user may request to see the AVL tree for all the numbers they’ve given
you so far — you shouldn’t have to do any extra work to show them this tree, rather you should keep
the tree always up-to-date.

Note: just running the AVL insertion routine for each number seen is not good enough, because it
takes O(log n) time on each insertion. You must make use of the fact that the numbers are increasing.
Be careful with the data structures you use!

Hint: Hint(s) are available for this problem on Canvas.
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Problem 26: (This problem is difficult. I suggest finishing other problems before starting it.) Heaps
had the interesting property that it was possible to implement them efficiently while making sure the
heap remains a complete binary trees (all levels except the last are completely filled in, and the last level
has all elements moved as far to the left as possible). On the other hand, AVL trees allow significant
imbalance in the tree; in fact, most AVL trees are not complete. Prove that it is impossible to keep a
normal binary tree complete under arbitrary insertions without frequently needing to do Ω(n) work per
insertion.

Hint: Hint(s) are available for this problem on Canvas.

3.3.2 Lecture 7/12

B-Trees and Red-Black Trees

Problem 27: Draw how you would represent the following 2–3 tree as a red-black tree (note we’re
using “1;2” to notate a node with two keys/values inside of it, i.e., a 3-node). Then, on the 2–3 tree,
show the result of inserting the numbers 0, 5, 10, and 20, in that order.

15

1;2 17

Problem 28: Your friend tells you they came up with an amazing new data structure where insertion,
deletion, and find-max all take at most O(log log n) time. Prove that your friend is either lying, or
hiding some restriction of their algorithm that makes it less general than normal BSTs.

Hint: Hint(s) are available for this problem on Canvas.

Problem 29: (This problem is difficult; I suggest finishing other problems before starting it.) (Modified
from CLRS 18-2) This problem asks you to make more powerful 2–3-tree operations than just insert
and remove. In all of the below, you can assume you’ve modified your 2–3 trees to keep track of the
height of every node.

1. Design an algorithm for joining two 2–3-trees T1 and T2 at the element x, i.e., if all the elements
satisfy T1 < x < T2, make a new 2–3 tree containing all the elements in T1 and T2 along with
the element x. If the two trees have the same height, your algorithm should run in time O(1).
Otherwise, your algorithm should take time proportional to the difference in height of the two
trees.

2. Design an algorithm for splitting a 2–3-tree T at a node x, i.e., return a 2–3-tree T1 having all
elements less than x and a 2–3-tree T2 having all elements greater than x. Your algorithm should
take time O(log n).

3. Explain how to implement insert and delete using the join and split operations above.

4. Describe how to use 2–3-trees to implement a list data structure with the following operations,
all taking O(log n) time: (i) find-ith-element, (ii) split one list into two at index i, and (iii)
concatenate two lists.

Hint: Hint(s) are available for this problem on Canvas.
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3.4 Lecture 7/15 Notes: Amortized Running Time

(This lecture follow CLRS chapter 16 pretty closely; that’s the best reference for this out of the textbooks used
this quarter.)

We’ve been talking about searching and binary search trees for the past few lectures. On Wednesday
we’re going to introduce you to the splay tree, which is one of the absolute best (and one of the simplest!)
balanced binary search tree algorithms out there. Interestingly, splay trees have pretty bad worst-case time.
On the other hand, they have good amortized time. Before we get there, however, we’re going to take a little
detour, and spend today’s lecture trying to figure out what that means on some much-simpler examples.

3.4.1 Motivating Example for Amortized Analysis

Before rigorously defining amortized analysis or proving things about it, we’re going to spend some time
talking through a motivating example to explain why it could be useful, i.e., why an algorithm with good
worst-case amortized time might still be useful even if it has bad worst-case nonamortized time.

Imagine you’re writing a compiler, and you need some data structure to keep track of all the functions in
the program being compiled. Something like a binary search tree would work: you want to be able to insert
a function into the data structure when it’s declared, and then search in the data structure for that function
whenever it’s used.

Let’s suppose the compiler designer is considering two possible data structures, with the following prop-
erties:

1. Data structure A guarantees the worst-case time per operation is O(
√
n).

2. Data structure B has worst-case time per operation only O(n), but it guarantees that a sequence of n
operations never takes more than O(n log n) time.

Which should they use?
Well, the compiler is essentially performing a sequence of operations on the data structure; let’s say it

does n operations. In data structure A, we know that each one of those operations takes O(
√
n) time, for a

total of O(n
√
n) time. Meanwhile, in data structure B, we know there might be a few of those operations

that take O(n) time, but overall, adding them all up, the total time taken by the data structure during
compilation is only O(n log n)!

The key here is that, from the user’s perspective, all the care about is the total time it takes to finish the
compilation. If you tell the user, “oh, but aren’t you upset this one data structure operation in the middle
took so long for version B?” they’ll think you’re crazy and point out that, even though that one operation
took a long time, so many other operations were so much faster that the total time was much shorter!

So in this scenario it seems quite reasonable to use data structure B, which provides a better amortized
time, even though its worst-case time is worse.

3.4.2 Definition of Amortized Runtime

Amortized analysis is a pretty broad term that essentially means “analyzing the cost per operation averaged
over a sequence of operations.” For today, we’ll work with the following pretty reasonable definition:

Definition 15. An algorithm has worst-case running time O(A(n)) amortized over n operations if every
sequence of n operations starting from an initial state takes time O(nA(n)).

We may sometimes drop the “amortized over” statement and just say something like, it has amortized
time O(A(n)).

This definition (based on the one in CLRS) is pretty good, except perhaps that it ignores any concept
of input size. For the example(s) we’ll see today, this is reasonable because the data structure will always
start off empty and operations will be used to fill it up one at a time, so the input size is naturally bounded
in the number of operations.

In more complicated situations, though, you might run into statements like: if the input to each operation
is size m, then the operation has time O(m2) amortized over m3 operations, which means: for any m, a
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sequence of m3 operations each one having input size m takes time O(m5). Similarly, a statement like:
starting with a tree of size n, search takes O(1) time amortized over log n operations, would mean: performing
a sequence of log n search operations on a tree of size n takes total time O(log n). (Note these are made up
examples to explain what amortization means; not claiming any algorithms have those time guarantees!)

3.4.3 Our Running Problem for Today

Before we talk about the running example we’ll use for today, it’s important to understand something about
how computers work. Most computers have a flat address space: you can basically think of memory as
one huge array, with all your data in different spots. When you create a contiguous array of size n, you’re
basically asking the operating system (saying operating system but often it’s really your programming
language runtime’s allocator handling your immediate request) to find a block of n unused slots in that big
huge array to reserve as belonging to you. The problem is, what happens if you want to increase the size
of that contiguous array? The operating system might have put other things next to your array, assuming
that you’d only use n slots! So you have to ask the operating system for a new region of memory, of bigger
size, and then copy everything over there, but this takes O(n) work!

This leads to one of the most classic amortized algorithms problems: the growing dynamic array.

Definition 16. The growing dynamic array problem is to maintain a contiguous array of elements with the
operation Push for growing the array by one.

Crucially, the dynamic array data structure does not know ahead of time how many things are going to
be in the array! So it doesn’t know how big of an array to allocate ahead-of-time.

The algorithm we’ll be looking at is basically the one that we described above: when too many items are
inserted, ask the OS for more space and copy everything over:

1 def push(array, value):

2 n = array.n_elements

3 s = array.size_of_allocation

4 if n == s:

5 new_data = (request region of size 2*(n+1))

6 for i = 0, 1, ..., n - 1:

7 new_data[i] = array.data[i]

8 (release array.data back to operating system)

9 array.data = new_data

10 array.size_of_allocation = 2*(n+1)

11

12 array.data[n] = value

13 array.n_elements = n + 1

The crucial thing to note is that, when we ask the OS for more space, we ask for twice as much space as
we really need.

3.4.4 “Brute-Force Approach” to Amortized Analysis

The most immediate way to go about doing an amortized analysis is just to think about a sequence of
n operations and how long it could possibly take to complete all of them in a row. CLRS calls this the
“aggregate analysis” method.

Before we get started, let’s look at what happens after the first few insertions. In the below table, n is
the number of elements in the array after that insertion, s is the size of the allocated region, and t is the time
to perform that operation. C is some large constant that depends on exactly how the code is implemented
and how you measure running time.
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Push Value x1 x2 x3 x4 x5 x6 x7 · · ·
n 1 2 3 4 5 6 7 · · ·
s 2 2 6 6 6 6 14 · · ·
t ≤ C · 1 ≤ C ≤ C · 3 ≤ C ≤ C ≤ C ≤ C · 7 · · ·

More generally, consider a subsequence xi, xi+1, . . . , xi+k, xi+k+1 where xi and xi+k+1 trigger resizes, but
xi+1, . . . , xi+k all have enough space. Notice in particular that, after xi, the array will have size 2i, hence
the second resize will only be triggered on the i+ k + 1 = 2i+ 1 insertion, i.e., k = i.

We will now compute the average time per operation just in the subsequence xi, . . . , xi+k. The xi push
requires ≤ Ci time, while all the others require ≤ C time. So the total time for that subsequence is

Ti,...,i+k ≤ Ci+

k∑
j=1

C = Ci+ Ck = Ci+ Ci = 2Ci.

And there are k + 1 = i+ 1 operations in that subsequence, hence

Ti,...,i+k

k + 1
=

2Ci

i+ 1
≤ 2C = O(1).

Now we’re almost done. Notice we can partition the entire sequence into such subsequences, and within
each subsequence the average time per operation is bounded above by 2C. But the following lemma tells us
the average time per operation across the whole sequence should be bounded above by this per-subsequence
bound, completing the proof:

Lemma 2. Let P be any finite (multi)set of numbers, and P (1), . . . , P (k) be some partitioning of that set.
Then,

1

|P |
∑
x∈P

x ≤ maxi
1

|P (i)|
∑

x∈P (i)

x.

Proof. Define M := maxi
1

|P (i)|
∑

x∈P (i) x. Because the P (i)s partition P , we have

1

|P |
∑
x∈P

x =
1

|P |
∑
i

∑
x∈P (i)

x =
∑
i

|P (i)|
|P |

 1

|P (i)|
∑

x∈P (i)

x

 ≤
∑
i

|P (i)|
|P |

M = M

∑
i|P (i)|
|P |

= M
|P |
|P |

= M.

In total, then, we’ve partitioned the steps into subsequences and shown that the average within each
partition is at most 2C, hence by the lemma above, the average across the entire sequence is at most 2C,
i.e., O(1). This proves the theorem:

Theorem 19. The dynamic array push operation takes amortized time O(1).

3.4.5 The Potential Method

The direct method helps make it clear what we’re doing, but when we get to more complicated algorithms
it becomes very difficult to track everything that’s going on across operations in a sequence. The method
that’s most used in practice is called the potential method, and you can see it as a simplified template for
doing aggregate analysis. (Demo in lecture with cube.)

In the potential method, you define a potential function Φ which takes as input the state of your data
structure after some operation in the sequence and produces as output a number. Using the potential
method involves proving things about how the potential changes during the operation. The following is the
key theorem of the potential method:

Theorem 20. Let s0 be the initial state of a data structure and s1, . . . , sn be the states after any sequence
of n operations.

Suppose you can prove the following:
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1. Φ(si) ≥ Φ(s0) for all i.

2. For any operation in the sequence, if ti is the time actually taken by the algorithm then ti + (Φ(si) −
Φ(si−1)) ≤ f(n).

Then, the amortized time per step is O(f(n)).

Proof. The total time of the whole sequence is

T :=

n∑
i=1

ti,

so it suffices to show that T ≤ nf(n).
But in fact:

nf(n) =

n∑
i=1

f(n) ≥
n∑

i=1

(ti + (Φ(si)− Φ(si−1))) = T + (Φ(sn)− Φ(s0)) ≥ T.

Using the potential method, we can make a much simpler proof for the dynamic arrays amortized bound:

Theorem 21. The dynamic array push operation takes amortized time O(1).

Proof. Note there is a constant C such that the time taken by the algorithm when i items need to be copied
is ≤ C(i+ 1).

Then, we will take the potential function to be 2Ck, where k is the number of items in the second half
of the array.

We can see that Φ(s0) = 0 and it remains nonnegative, so the first condition is met.
For the second condition, there are two cases:

1. On a normal push, we do ≤ C work and increase the potential by at most C, hence for those steps
ti + (Φ(si)− Φ′(si−1)) = O(1).

2. If xi is a resize push, we need to copy i items, which takes ≤ Ci time. But our starting potential in this
case is exactly 2C i−1

2 = C(i− 1), so in total ti + (Φ(si)−Φ(si−1)) ≤ Ci+ (0−C(i− 1)) = C = O(1).

In either case the desired inequality is shown, so we can conclude O(1) amortized time per operation.

3.4.6 Post-Lecture Ed Notes

There was a question about the etymology of ”amortize.” Turns out, it does indeed come from the same
”mort” (”death”) as ”mortgage”, with the idea that you’re ”killing off a debt” slowly over time. In this
context, the ”debt” is the infrequent worst-case operations, and ”paying off the debt” means making other
operations faster than the average time to compensate for those longer-running worst-case operations.

CLRS Chapter 16 is the best reference I know for amortized analysis, and it has a lot of great examples
beyond just the dynamic table one. In addition to the aggregate (direct) method and the potential method,
they describe the accounting method which I think of as a special case of the potential method (instead of
having a single black-box potential function, you associate parts of the potential with different objects in
your data structure). It has a nice analogy with money; I suggest reading that section if you have time.

Another important thing to note: in the CLRS they actually change the definition of amortized time
throughout chapters 16.1, 16.2, and 16.3. E.g., in 16.3 they define the amortized time to be what we called
ci+(Φ(si)−Φ(si−1)), and then on the side from that they argue if Φ never drops below its initial value then
this definition of amortized time overapproximates the true time when summed over n timesteps. I find this
changing definition confusing, which is why we didn’t change the definition in lecture. Instead, for this class,
we’re going to use one consistent definition of amortized time (average time per operation averaged over a
sequence of n operations) and think of the potential method as a way to prove things about the amortized
time indirectly, rather than redefining amortized time to be dependent on a potential function. But it’s
important to know that this is something some authors do (i.e., define amortized time with reference to a
potential function) when you’re reading papers, etc.
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Name: Stanford ID Number:

3.4.7 Lecture 7/15 EC Question

Suppose instead of doubling the size of the array every time we resize, we just increased it by one. What
would be (i) the worst-case and (ii) the amortized time per insertion with that modified algorithm?
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3.5 Lecture 7/17 Notes: Splay Trees and Union-Find

Today we’re going to do something unusual for this class: we’ll describe two algorithms (splay trees and
union-find) without proving anything about their running time. The reason is that these algorithms are very
useful, so you should know about them, but the proofs for their running time are, unfortunately, far too
complicated for lecture. Thankfully, you’ll at least see on the homework: (1) the proof of the splay tree
amortized time, and (2) the proof of a worst-case time for a modified version of the union-find algorithm.

3.5.1 Splay Trees

A splay tree is really just a normal BST: when we say splay tree, we don’t mean anything special about
what the tree looks like, what we mean is just that whenever we access the tree we use the special splay tree
operations.

Splay trees are simultaneously one of the best and simplest balanced binary search tree algorithms we’ll
see in this class.

The key intuition behind splay trees is this: whenever you access a node, move it up to the root.
Example tree:

10

1

0 5

4

3

6

When we access 3, we’ll use rotations in a special way to move it up to the root.
There are at least two reasons you might want to do this:

1. Good average time: if your input distribution involves accessing 3 very frequently, then it will keep 3
near the top of the tree to speed up the average access time.

2. Good amortized time: remember in amortized time we’re OK with a few worst-case operations, but we
want to avoid sequences of worst-case operations. If we left 3 where it was, you would have a sequence
of worst case operations by just repeatedly looking up 3. By moving it up towards the root, you
rule out this possibility, making it a lot harder for someone to force you into a sequence of worst-case
operations.

Splaying

The key operation is the splay, which is how we bring a node up to the root:

1 def splay(node):

2 while node is not root:

3 if node is zig from root:

4 do splay-zig rotation to move node to the root level

5 if node is zig-zig from grandparent:

6 do splay-zig-zig rotation to move node up two levels

7 if node is zig-zag from grandparent:

8 do splay-zig-zag rotation to move node up two levels

Note that the rotation for zig-zag is the same as the AVL zig-zag rotation, but for zig-zig it’s a bit
different. The three rotation types are shown below.
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1. If r is the root of the entire tree and we’re trying to splay its immediate child x, this looks like

r

x

A B

C

→

x

A r

B C

2. If the path to x involves a zig-zig step, we rotate like so:

z

y

x

A B

C

D

→

x

A y

B z

C D

Which you can implement as first rotating right around z, then rotating right around y. (Note:
surprisingly, this is different than doing the rotations in the other direction!)

3. If the path to x involves a zig-zag step, we rotate like so:

z

y

A x

B C

D

→

x

y

A B

z

C D

Which you can implement as first rotating left around y, then rotating right around z. (Note: surpris-
ingly, this is different than doing the rotations in the other direction!)

Let’s see what happens when we splay 3.

10

1

0 5

4

3

16

10

1

0 3

4

5

16 3

1

0

10

4

5

16

It’s also instructive to see what happens when we splay the leaf 1 in this tree:
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6

5

4

3

2

1

6

5

4

1

2

3

6

1

4

2

3

5

1

6

4

2

3

5

Splay Tree Operations

You can use splaying to make splay tree versions of most BST operations.

Search for Node The search routine looks for that value, then makes sure to splay whatever that last
node it sees is:

1 def splay_search(root, v):

2 if root is empty: return

3 if v == root.value:

4 splay(root)

5 return root

6 child = root.left if v < root.value else root.right

7 if child is empty:

8 splay(root)

9 return NotFound

10 return splay_search(child, v)

Note: there’s something subtle here, which is that we splay a node even if we don’t find what we’re
looking for! It turns out this is pretty important to the amortized time bound.

Example: searching for 5

10

1

0 4

5

16

10

5

4

1

0

16 5

4

1

0

10

16

Insert a Value To insert a value in a splay tree, do the normal BST insertion and then splay the resulting
node.

1 def splay_insert(root, v):

2 new_node = normal_bst_insert(root, v)

3 splay(new_node)

4 return new_node



3.5. LECTURE 7/17 NOTES: SPLAY TREES AND UNION-FIND 85

Example: inserting 5

10

1

0 4

16

10

1

0 4

5

16

10

5

4

1

0

16 5

4

1

0

10

16

Split at a Node The split method takes a value v in the splay tree and then breaks the tree into two splay
trees, one containing all nodes with values (strictly) less than v and one containing all nodes with values
(strictly) greater than v. To do so, we find the node with value v, splay it up to the root, and then remove
it: the two parentless children are now roots of the two trees we want!

1 def splay_split(root, v):

2 root = splay_search(root, v)

3 left, right = root.left, root.right

4 root.left, root.right = empty, empty

5 return left, right

Example: splitting 10

20

10

8

7 9

11

21 10

8

7 9

20

11 21

8

7 9

20

11 21

Join Two Trees On the other hand, if the values in T1 are all smaller than the smallest value in T2, we
can join the two trees into one by splaying the rightmost node T1, then connecting the second tree as a right
child of that node.

1 def splay_join(root1, root2):

2 root1 = splay(find_max(root1))

3 root1.right = root2

4 return root1

Example: join the trees 7/8/9 and 11/20/21 from above:

8

7 9

20

11 21 →

9

8

7

20

11 21 →

9

8

7

20

11 21



86 CHAPTER 3. SEARCHING

Delete a Value To delete a value from a splay tree, first split the tree at that value and then join the two
resulting trees back together.

1 def splay_delete(root, v):

2 smaller, greater = splay_split(root, v)

3 return splay_join(smaller, greater)

Example: see the previous two examples; they deleted 10!

Splay tree time bounds

Theorem 22. The amortized time per operation for a sequence of n of the above splay tree operations is
O(log n).

Proof. The proof is too complicated for lecture/exams, but you’ll see most of it on the homework!

(There are more interesting things you can say about the average time for splay tree accesses. We won’t
get into that this quarter, except to point out that if you access the same element multiple times in a row,
it will stay at the root so searches will be faster.)

Notably, if the tree starts in any possible configuration, it’s possible for the worst-case time per operation
to be Θ(n), but the above amortized bound still holds.

Splay Tree Implementation Considerations

The pseudocode we’ve given above is a bottom-up splay implementation. It turns out in practice it’s often
better to do the splaying top-down, while you search. That also makes it easier to do many of the above
operations without parent pointers; in fact, with this optimization, splay trees are the most space-efficient
balanced BST we’ve seen! We won’t worry about such optimizations in this class.

3.5.2 Union-Find

We’re going to talk about one more algorithm today, the union-find algorithm (sometimes called disjoint
sets).

Here’s a fun, but not super practically useful motivating example. Consider a group of people, maybe:
Zach, Jason, Andrew, Bob, Mary, Kate, and Steve. Suppose we know, for each person, who their friends are.
We want to know if there are any friend islands, i.e., groups of people who are all friends with each other
(or friends of friends of . . . of friends) but not friends with anyone else outside of their island.

Our approach will be the following: start by assuming everyone lives in their own island. Then, iterate
through all the people. For each person, combine their island with the islands of each one of of their friends.

(TODO: insert example)

We need a data structure for keeping track of the islands with the ability to join two islands. We might
also, e.g., want the ability to check if two people belong to the same island or not, or to list everyone in a
particular island. The idea behind union-find is to store them in a forest of trees, with each person being a
node and having a pointer to its parent in the tree.

Given a node in the tree, we can find the root of the tree it’s in:

1 def find_root(A):

2 if A.parent is empty:

3 return A

4 A.parent = find_root(A.parent)

5 return A.parent

And given two nodes in the tree, we can join their clusters into one:
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1 def union(A, B):

2 A = find_root(A)

3 B = find_root(B)

4 if A == B:

5 return

6 if B.weight < A.weight:

7 A, B = B, A

8 # now A is smaller

9 A.parent = B

10 B.weight = B.weight + A.weight

11 return B

We can, e.g., check if two nodes are in the same cluster like so:

1 def same_set(A, B):

2 return find_root(A) == find_root(B)

Then our islands pseudocode is:

1 def find_islands(people):

2 for person in people:

3 for friend in person.friends():

4 union(friend, person)

Two things about these code snippets are important:

1. Path compression: When we find the root, we update all of the nodes along the way to point directly
at the root, so if we ever run find-root on any of them again, we’ll find the root much more quickly.

2. Join-by-size: when we connect together two islands, we make the larger one the root.

With these two optimizations, the following amortized time bound holds:

Theorem 23. A sequence of n union-find operations takes O(α(n)) amortized time, where α(n) is the
inverse Ackermann function.

Proof. Out of scope for this class. You’ll see a proof of O(log n) worst-case per-operation time on the
homework.

The inverse Ackermann function is a really fascinating function, but, for the most part, outside the scope
of this class. For this class, all you need to know is that α(n) grows extremely slowly: if you live in the real
world, you can assume α(n) ≤ 5.

3.5.3 Post-Lecture Ed Notes

One thing I realized was a bit ambiguous in the lecture pseudocode while doing this: ”normal bst insert”
in the pseudocode should return the newly inserted node (in the C code above it turned out to be easier to
have it return the overall root of the tree, and then do a separate splay search step to find it — the two
have identical behavior, except the C code does an extra search down the tree so it’s about twice as slow).

If you’re interested in Splay trees, the original paper is quite a reasonable read, especially with all the
work we’ve been doing to understand the potential method: https://www.cs.cmu.edu/~sleator/papers/
self-adjusting.pdf

There was a proposal relating to move-to-root trees, which came before splay trees. You can read about
those here: https://dl.acm.org/doi/pdf/10.1145/322092.322094

There was another word-choice question, this time about the word ”splay.” MerriamWebster says: ”splay:
to cause to spread outward,” which I guess is vaguely what you can imagine is happening to the tree as you
drag the node-to-be-splayed up through it? AFAIK the original paper doesn’t motivate the term.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
https://dl.acm.org/doi/pdf/10.1145/322092.322094 
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Union-find is often used in type inference systems for programming languages. https://www.cs.cmu.

edu/~janh/courses/ra20/assets/pdf/lect03.pdf seems to discuss this. At a high level, you might imag-
ine if you see a statement like ”a = b” and you know ”a” has type ”pointer to X” and b has type ”pointer
to Y”, where X and Y are unknown type variables, then you should infer X and Y are the same. Union-find
can help keep track of sets of types that you have inferred must be the same.

You can read more about the Ackermann function here: https://en.wikipedia.org/wiki/Ackermann_
function just remember that in union-find we’re dealing with its inverse, which is extremely slow-growing.

The “friend islands” problem can be solved slightly faster using DFS/BFS, which we’ll explore in the
graphs section. The caveat is that the DFS/BFS approach can’t as easily handle cases where new friendships
are made over time.

(A student asked for textbook recommendations regarding amortized analysis, splay trees, and union
find. Below is my response:)

Amortized analysis: I think CLRS is the only one that covers it directly, and they do a pretty good job
(their ’accounting method’ is worth a read/may help clarify things left vague by lecture). But they define
things subtly differently so just be careful to use the lecture notes from class as the ’gold standard’ where
needed.

Union-find: both CLRS and SW contain discussions of union-find; I think both are fine, tho like usual I
prefer SW. Note both of those describe a bunch of different variants of union-find, e.g., using join-by-height
instead of join-by-size, but in this class we’ll refer to the variant I wrote on the board (path compression +
join-by-size) as just normal ”union find”.

Splay trees: I don’t think any of the textbooks cover them, unfortunately, so you’ll have to refer to
my lecture notes + anything you can find online. Wikipedia has a pretty extended article: https://en.

wikipedia.org/wiki/Splay_tree and here’s a writeup from a Cornell variant of 161: https://www.cs.

cornell.edu/courses/cs3110/2013sp/recitations/rec08-splay/rec08.html In fact, if you’re willing
to put up with some annoying scanning, I found the original paper to be surprisingly readable: https://

www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf at least up to Theorem 1, there shouldn’t really
be anything new/beyond the class, especially if you’ve done the relevant homework problems.

https://www.cs.cmu.edu/~janh/courses/ra20/assets/pdf/lect03.pdf
https://www.cs.cmu.edu/~janh/courses/ra20/assets/pdf/lect03.pdf
https://en.wikipedia.org/wiki/Ackermann_function
https://en.wikipedia.org/wiki/Ackermann_function
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Splay_tree
https://www.cs.cornell.edu/courses/cs3110/2013sp/recitations/rec08-splay/rec08.html
https://www.cs.cornell.edu/courses/cs3110/2013sp/recitations/rec08-splay/rec08.html
https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
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Name: Stanford ID Number:

3.5.4 Lecture 7/17 EC Question

Draw the result of splaying the following tree at node 14:

5

12

10 15

13

14

18

20
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3.6 Lecture 7/19 Notes: Hashing and Risky Hash Sets

These past two weeks we’ve been thinking about the search problem, where you want to store a set of items
with the operations search, insert, and delete.

The algorithms we’ve seen so far, based on BSTs, have been very general; they work for any types of
values as long as you can compare them. However, similar to the comparison sorting lower bound, it’s
possible to do better if we know more about our data!

3.6.1 Direct Addressing Sets

In a BST, when you want to check whether a value is in the BST or not, you have to follow a path through
the tree to find out where that value “is supposed to go.” This process of searching for “the node where the
item should be” is what takes so much time in the BST operations. What if instead we knew ahead-of-time
what all the possible values were, and we preallocated spots for all of the possible items? Then when we
want to check if an item is in the set, we just directly check its spot. This idea leads to the following direct
addressing data structure.

Suppose we know that all of the n distinct items we want to store are numbers in some small range
0, 1, . . . ,M − 1. Then the direct addressing data structure keeps an array of M buckets. We decide ahead of
time that value i “belongs in” bucket i — no searching through a tree is needed, we can just go directly to
that bucket and see whether value i is there or not.

We can then implement search, insert, and delete like so, where buckets is an array of values of size at
least M . Initially, the buckets should all have a special ‘empty’ value in them.

1 def search(buckets, v):

2 return buckets[v] == v

1 def insert(buckets, v):

2 buckets[v] = v

1 def delete(buckets, v):

2 buckets[v] = empty

Example with M = 10:

1. Originally we have the buckets [⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥], where ⊥ is a special value that means
“empty”.

2. If we insert 3, we have the buckets [⊥,⊥,⊥, 3,⊥,⊥,⊥,⊥,⊥,⊥]

3. If we insert 4, we have the buckets [⊥,⊥,⊥, 3, 4,⊥,⊥,⊥,⊥,⊥]

4. If we insert 0, we have the buckets [0,⊥,⊥, 3, 4,⊥,⊥,⊥,⊥,⊥]

5. If we delete 3, we have the buckets [0,⊥,⊥,⊥, 4,⊥,⊥,⊥,⊥, 9]

6. If we insert 9, we have the buckets [0,⊥,⊥,⊥, 4,⊥,⊥,⊥,⊥, 9]

7. To check whether 1 is in the set, we look at bucket 1 and see it’s ⊥ so 1 is not in the set.

8. To check whether 4 is in the set, we look at bucket 4, see it does indeed have 4 in it, so it’s good to go!

The space usage of this approach is O(M) while the time per operation is O(1).
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Problems With Direct Addressing

If we have very few items in a very large set of possible values, e.g., 100 items out of a possible 264, then this
approach won’t work very well because the space usage will be unreasonably huge. Also, it essentially only
works for items that are numbers, otherwise we can’t use them to index into the array of buckets.

3.6.2 Hash Functions and Risky Hash Sets

Today we’re going to experiment with an approach that we’ll call risky hash sets to avoid the space usage
associated with counters. They’re essentially a worse version of a data structure called a Bloom filter, but
since it’s so much worse, we’re going to give it a different name (Bloom filters are out-of-scope for the class).

The basic observation behind risky hash sets is that, if you have way more buckets than items, almost all
of those buckets are going to be empty. So we want to try and collapse a bunch of those buckets together.
This might cause false positives, but (as we’ll see) the results will still be “approximately dependable.”

Every risky hash set needs a hash function, which says how to map “logical buckets” in the big, direct-
address set that we imagine happening behind-the-scenes, to the smaller set of buckets that we actually
store. For example, if we used the hash function h(x) := ⌊x/4⌋ in the earlier example, we’d only need to
store the “hash buckets” [0, 4, 9]. Once we’ve decided on a hash function, we can modify our direct addressing
pseudocode to work directly on the hash buckets. The resulting pseudocode we’ll call a risky hash set.

1 def risky_search(buckets, v):

2 return buckets[hash(v)] == v

1 def risky_insert(buckets, v):

2 buckets[hash(v)] = v

1 def risky_delete(buckets, v):

2 buckets[hash(v)] = empty

Two important things to note before we see an example:

1. Of course, if you try to store more than 3 things in this risky hash set you’re going to have a problem!
Imagine inserting 8: it will bump 9 out of the bucket, as if it never existed! That’s part of the reason
we call it risky.

2. In fact, you might run into problems even earlier than that if your hash function happens to map
multiple nonempty logical buckets into the same hash bucket.

To resolve the first issue, we generally want to make sure we have more hash buckets than items. To resolve
the second issue, we want our hash function to “spread the values around evenly,” making sure not to, e.g.,
map all the logical buckets into a single hash bucket (this desired property is where the word ‘hash’ comes
from). In practice, we commonly perform analyses assuming the hash function is chosen at random from
the set of all possible hash functions. This makes many analyses much easier, but is a potentially inaccurate
assumption in practice. We’ll talk more about that later today!

Collisions

Of course, this risky hash set is quite risky! If two different values have the same hash, they’ll collide in the
same bucket, and the first one will get booted out as if it was never inserted in the first place.

We’re going to analyze the frequency of such collisions in two ways: First, what is the chance you get no
collisions? Second, what is the chance your lookups are correct?
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The Birthday Paradox (This approach is adapted from CLRS Chapter 5.4.) What we’re about to prove
is this theorem:

Theorem 24. If you place n items at random into k buckets, the expected number of (unordered) pairs of
items that land in the same bucket is

(
n
2

)
1
k .

First, we’re going to take a little detour and imagine a fun scenario. Imagine you’re at a party with n
total people, and someone makes the following offer: you pay them $100 to play the game, but once the
game starts, they’ll give you $100 for every pair of people at the party that you find where both people in
the pair have the same birthday. Assuming the birthdays of the attendees are uniformly and independently
distributed, should you take the bet? What will your expected profit be?

Let’s start by analyzing the following question: how many people do you need for the expected number of
birthday collisions to be at least 1? Let’s say the number of people is n and the number of possible birthdays
is k (we know k = 365 or 366, but we’ll leave it as a variable for now for generality). The probability that
any two share a birthday is k

k2 = 1
k because there are k2 possible pairs of birthdays they could have and only

k pairs of identical birthdays. Now, let’s ask: what is the expected number of unique pairs of people with
the same birthday?

E[number of pairs of people with same birthday] =
∑

{p1,p2}⊆{1,...,n}

1

k
=

(
n

2

)
1

k
,

which now finishes the theorem!
Let’s revisit the bet. We only want to take the bet if this expectation is at least 1. So we solve(

n

2

)
1

k
≥ 1,

which tells us we need

n2 − n ≥ 2k,

i.e., taking a square root and ignoring constant factors,

Θ(n) ≥ Θ(
√
k),

which tells us that, as long as the number of people is well over the square root of the number of ‘days,’ we
should take the bet!

In particular, going back to the concrete inequality, we can find for k = 365.25 we need:

n2 − n ≥ 2(365.25),

i.e.,

n2 − n− 730.5 ≥ 0

which we can solve using the quadratic formula to find:

n =
1±

√
1 + 4 · 730.5

2
≈ 1

2
± 27.

So, as long as the party has about 28 people, the expected number of collisions you find is going to be at
least one, hence by linearity of expectation your expected profit is −100 + 100E [number of collisions] ⪈
−100 + 100 · 1 = 0 dollars.

Warning: In lecture today I described a slightly different bet, for which (as [anonymized student] help-
fully + correctly pointed out) the above analysis does not properly apply to tell you when you should/should
not take the bet. If you’re interested in that nuance, as a mea culpa for that mistake I’ve added an appendix
to the end of these lecture notes that explains this in more detail and showing how you could analyze the
original bet. But that’s out of scope for this class; the main thing you need to know is the theorem above,
that the expected number of collisions is

(
n
2

)
1
k .
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Birthday Paradox and Risky Hash Sets The birthday problem tells us that, if n2−n ≥ 2k, we’ll likely
have hash collisions. So if we want to avoid having too many collisions, we’ll need to ensure n2 −n < 2k (in
fact, it suffices to ensure n <

√
k, which is a simpler inequality we’ll use from here on out).

Rehashing and the Less-Risky Hash Set This analysis, along with the idea of a growing array, leads
to a natural idea. For ease of exposition, we’ll assume here we only need to handle insertions.

1. Keep a list of everything inserted into the RHS.

2. Let n be the length of this list and k be the number of hash buckets. When an insertion causes the
length of this list to exceed

√
k:

(a) Create a new blank RHS with a new hash function and k′ = 4n2 buckets.

(b) Insert every item in the list into the new RHS.

(c) Switch to using that RHS from now on.

Based on our earlier analysis, this will ensure we never expect more than a constant number of collisions,
which is pretty good. But what about the time of doing all these rehash operations?

Turns out, the amortized time is pretty good! Suppose we do a rehash with n0 items, making a new RHS
with k′ = 4n2

0 buckets. We won’t rehash again until i more insertions, at the point:

n+ i ≥
√

4n2
0 = 2n0.

But this takes n0 more time, hence it’s amortized away (same argument as for dynamically growing arrays).

Summary of What We’ve Done and Where We’re Going If you choose an insertion sequence
x1, . . . , xn of values, then insert them into the growing RHS with hash functions chosen at random, you are
ensured:

1. O(1) amortized worst-case time per operation.

2. O(n2) space usage.

3. On expectation, at most O(1) collisions at any point in that sequence, i.e., lookups that would report
“not in the set” even though the value was inserted.

The O(1) time per operation sounds great, but the other two are quite sad: n2 space is a lot of overhead,
and while “fewer than one expected collisions” sounds good, what would sound even better is to have
guaranteed zero collisions. On Friday we’ll talk about how to avoid those issues by handling collisions in a
smarter way than just booting out whoever was there before.

Picking Hash Functions

Before that, let’s wrap up today by talking a little bit more about those magical “hash functions” that are
supposed to randomly spread our values around a smaller range.

Let’s think about what kinds of values we might have:

1. Strings

2. Integers

3. Machine words (essentially, integers in the range 0, . . . , 264 − 1)

4. Etc.
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At least the first two of these are infinite sets, so there are infinitely many possible hash functions. So it
seems pretty hard to truly pick one of those functions out at random, and even if we did so, how would
represent it?

The answer is that we don’t. This is concerning, because if our hash function isn’t really chosen at
random, the user could be a little bit evil, try to reverse-engineer our hash function, and insert a long
sequence of colliding inputs. This would ruin our “O(1) expected collisions” property, and make the RHS
data structure arbitrarily bad!

To avoid this scenario, three techniques are frequently used:

1. If you know ahead of time exactly what inputs you’re going to insert into the RHS, you can think
really hard (or have a computer think really hard for you) to devise a hash function that guarantees
no collisions between those inputs.

2. Make the hash function really, really complicated, so that no matter how hard they try, it’s difficult
for an evil user to find two inputs that would map to the same bucket. (This approach would need
to be balanced against the speed of the hash function!) Another way to interpret this approach
is that “randomness” sort of means “unpredictability,” so you can try to make your hash function
unpredictable by making it complicated.

3. ‘Sprinkle in’ just enough randomness to make it difficult for the attacker to reliably cause collisions
(frequently called salting the hash function). There are at least two ways to think about this:

(a) Use one of the “complicated hash functions” above, but append some random string to the end
of whatever you’re hashing (this is what Python and some other languages do).

(b) Pick the hash function at random from a subset of all the (maybe infinitely many) possible hash
functions. It turns out it is possible to do this in a way that actually guarantees the same O(1)
expected collisions property of a truly randomly chosen hash function; you’ll see this on the
homework!

Appendix: The Birthday Bet

This section is out-of-scope for the class; it’s mainly here to correct a mistake in the way I
presented the motivating birthday scenario in lecture.

In lecture, when discussing the birthday problem, I framed the bet this way: if you find any number of
collisions you get $100, otherwise you lose $100 (call this “Bet A” and the one I describe in the notes above
“Bet B”). We then saw that once you have more than ≈ 27.5 people at your party, the expected number of
collisions (pairs of people with the same birthday) is at least 1. However, this alone does not necessarily
mean you should take bet A, because the outcome of the bet is not a linear function of the number of
collisions (so we can’t apply linearity of expectation). For example, if all we know is the expected number
of collisions is at least 1, that could hypothetically be the case because there is, say, a 75% chance of zero
collisions and a 25% chance of 10 collisions! In that scenario, the expected number of collisions would still be
greater than 1, but we shouldn’t take Bet A (at least, in the long run/if we’re OK with risk) because our
expected profit is 0.75 · −100 + 0.25 · 100 = −50 dollars. On the other hand, even in the same scenario, we
probably should take Bet B, because the expected profit works out to 0.75 ·−100+0.25 · (1000−100) = 150
dollars. Even though we still expect to lose Bet B most of the time, the much higher payoff when we do win
makes it a reasonable choice on expectation.

Analyzing Bet A

In the rest of this appendix, I’ll describe an analysis of Bet A. In lecture, I indicated that you should be able
to use Markov’s inequality to transform the expected value into a useful analysis for Bet A, but I no longer
believe that’s true (or at least, all the ways of applying of Markov’s inequality I’ve tried don’t seem to give
anything nontrivial). Instead, I see no way of getting around just directly computing the probabilities of
the two outcomes, i.e., of having no collisions vs. having more than zero collisions. So that’s what we’ll do
below.
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(Adapted from CLRS Chapter 5.4) Let’s directly compute the probability that there are no collisions. To
do so, we can imagine iterating through the n people at the party one-by-one, and making sure we have seen
no repeated birthdays yet. This leads to the following product, where the term k−i

k captures the probability
that the i+ 1th person’s birthday doesn’t collide with any of the previous i people’s birthdays.

Pr[No collisions] =
k

k

k − 1

k

k − 2

k
· · · k − n+ 1

k
.

Unfortunately, bounding this product is not very elementary.
One approach you can take is to write it as k!

kn(k−n)! and then apply Stirling’s approximation, but Stirling’s

approximation is generally only stated as an asymptotic result that holds for large n, so it’s not immediately
obvious how applicable it is in this concrete setting.

Instead, CLRS suggests to use the following lemma

Lemma 3. For all real x, 1 + x ≤ ex.

Proof. The fact is immediate for x ≤ −1 because ex > 0. If you know the series definition of ex, this fact
is also immediate for the remaining cases because all higher-order terms in the sum are either nonegative or
have decreasing magnitude.

But I prefer thinking of ex as the inverse of ln, which is itself defined in terms of the area under the curve
1
x , so let’s see how to approach it that way. Because the logarithm is increasing and injective, it suffices to
show that ln(1 + x) ≤ x, i.e., x− ln(1 + x) ≥ 0. Considering the derivative of this quantity, i.e., 1− 1

1+x we
see that x− ln(1 + x) is decreasing in the range [−1, 0) and increasing in the range (0, 1], so − ln(1 + 0) = 0
is the minimum of x− ln(1 + x) in the range [−1,∞), as desired.

Using this lemma, we can rewrite

Pr[No collisions] =
k

k

k − 1

k

k − 2

k
· · · k − n+ 1

k

=

(
1 +

−1

k

)(
1 +

−2

k

)
· · ·
(
1 +

−n+ 1

k

)
≤ e−1/ke−2/k · · · e(−n+1)/k

= e
∑n−1

i=1 i/k

= e−n(n−1)/(2k).

We want this to be at most 1
2 , so we solve

e−n(n−1)/(2k) ≤ 1

2

−n(n− 1)/(2k) ≤ ln
1

2
−n(n− 1)/(2k) ≤ − ln 2

n2 − n ≤ 2k ln 2.

Filling in k = 365.25, this bound tells us we need just above 23 people at the party to have a 50% chance of
winning the bet, so if your party has 24 or more people you should take Bet A in addition to Bet B.

3.6.3 Post-Lecture Ed Notes

A student asked: “As a developer creating risky hash, isnt that randomness a double edge sword for me if I
myself cant find the same bucket twice?”

Sorry for any confusion — that randomness is chosen once, at the beginning of the program, then stored
(you may also need to rechoose it every time you rehash, if you’re doing the growing version). It’s not the
case that the randomness you sprinkle in changes every time you call the hash function, rather, it changes
every time you run a new copy of the program.
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If you found the birthday problem interesting, here’s a paper from our very own Persi Diaconis on a class
of related problems: https://www.stat.berkeley.edu/~aldous/157/Papers/diaconis_mosteller.pdf

The ”risky hash sets” we saw are most similar to Bloom filters: https://en.wikipedia.org/wiki/

Bloom_filter the main changes to get to Bloom filters are: (1) use multiple hash functions and (2) just
store 0/1 in each bucket, not the value itself.

Of particular interest is the counting bloom filter: https://en.wikipedia.org/wiki/Bloom_filter#

Counting_Bloom_filters Basically, if in each bucket you store a count of the number of items, you can
keep track of two sets A and B then compute a bloom filter for the difference A - B. The special thing is
that the collision rate for the computed bloom filter is independent of the number of collisions in A and B
individually, instead it’s only dependent on the number of collisions in the set A-B. So regardless of how
large A and B are, the counting bloom filters you use for those two sets can be very small so long as all you
care about in the end is computing A-B, and A-B has very few collisions. This is useful in the context of set
reconciliation.

Poor choice of hash function can cause some real-world consequences. See https://lwn.net/Articles/
474912/ for example!

https://www.stat.berkeley.edu/~aldous/157/Papers/diaconis_mosteller.pdf 
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter#Counting_Bloom_filters
https://en.wikipedia.org/wiki/Bloom_filter#Counting_Bloom_filters
https://lwn.net/Articles/474912/
https://lwn.net/Articles/474912/
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Name: Stanford ID Number:

3.6.4 Lecture 7/19 EC Question

In lecture we’ve been focusing on data structures that maintain a set of items under the operations insert,
delete, and search, where search only indicates whether or not the item is in the set.

Suppose instead of maintaining a set, you want to maintain a key–value dictionary. We want the ability
to insert pairs of items, (k, v), at a time. We call the first item in the pair the key k. We call the second
item in the pair the associated value v. When we search for a key k, it should return the pair (k, v) that
was inserted with that key (if any exists). For example, if we first insert the pairs (1, A), (3, C), (6, F ), then
search for 3, it should return (3, C). You can assume no two pairs have the same key.

Part 1: Explain (in two-to-three English sentences or short pseudocode) how to modify the risky hash
set we saw today to implement a key-value dictionary, not just a set. Hint: store the entire pair in the
bucket, but only hash one part of the pair to the hash function.

Part 2: Explain (in two-to-three English sentences or short pseudocode) how to modify the binary
search trees we saw earlier in this class to implement a key-value dictionary, not just a set. Hint: compare
only part of the pair.
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3.7 Week 4 Problem Sheet

3.7.1 Lecture 7/15

Amortized Analysis

Problem 30: For each of the following applications, explain whether you would be OK using an
algorithm that guarantees only (i) an average-case O(1) bound, (ii) an amortized O(1) bound, (iii) a
worst-case O(1) bound. In some cases there may be some nuance; feel free to explain your answers.

1. An algorithm that will run after every pacemaker pulse to keep track of the number of pulses.

2. An algorithm that converts batches of user-uploaded files into a different filetype, then emails the
user a link to download the converted files.

3. You’re writing a program to generate prime numbers that works by generating a random number
and then checking if it’s prime. The primality checker is the algorithm in question, i.e., the one
with average/amortized/worst-case bounds.

4. An algorithm that runs on every frame of an interactive game.

Problem 31: (Adapted from MIT 6.046J Spring 2015 Course Notes) Suppose you start with an
empty 2–3 tree and perform a sequence of n insertions. First, prove that the worst-case number of
split operations that occurs per insertion is Θ(log n). Then, prove that the amortized number of split
operations that occurs per insertion is O(1). Your answer should use the potential method and explicitly
define a potential function.

Hint: Hint(s) are available for this problem on Canvas.

Problem 32: (Adapted from CLRS) In class we analyzed the dynamic array data structure with a push
operation. In many applications, however, our arrays both grow and shrink. When possible, we would
like to tell the operating system that we’re not using as much space as we originally needed, and let it
defragment by moving our data to a region in memory that is a better fit. So, define a corresponding pop
operation that removes an element from the back of the array. You can also modify the push function
from class if needed. The push and pop methods should together ensure:

1. If n is the number of elements and s is the size of the allocation region as requested from the
operating system, your algorithms should ensure that n ≥ ⌊ 1

4s⌋.

2. In a sequence of push and pop operations, the amortized cost per operation should always remain
O(1).

3. The only things you can do with the operating system are release a whole allocation block and
request a new one of a particular size, both of which you can assume happen in O(1) time.

You should give two proofs: one using the direct method, and one using the potential method
(precisely state the potential function you’re using!).

Hint: Hint(s) are available for this problem on Canvas.

Problem 33: (Adapted from Sleator and Tarjan. In the homework for Wednesday you will do an
amortized analysis of a data structure called the splay tree. The standard amortized analysis of splay
trees uses the potential method we saw in class. While the argument is not extremely deep, it does rely
on a lot of detailed and easy-to-mess-up algebraic manipulations. In this problem you’ll do pretty much
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all the algebra needed, which will make finishing up the amortized analysis after Wednesday’s lecture
super easy!)

Given a binary tree T of size n, a node in the tree x, define the size of a node s(x) to be 1
n times

the number of nodes in the subtree rooted at x. Then, define the rank of a node r(x) to be log s(x),
and the potential of a tree Φ =

∑
x∈T r(x).

Now, consider the following three tree operations, where capital letters refer to subtrees:

1. The single rotate:

y

x

A B

C

x

A y

B C

2. The zig-zig rotate:

z

y

x

A B

C

D

x

A y

B z

C D

3. The zig-zag rotate:

z

y

A x

B C

D

x

y

A B

z

C D

Let Φ (s, r) be the potential (sizes, ranks) of the tree before one of the above operations and Φ′ (s′,
r′) the potential (sizes, ranks) afterwards. Prove the following facts, in this order:

1. If a single rotation is done:

(a) The rank of y has decreased, i.e., 0 ≥ r′(y)− r(y).

(b) The rank of x has increased, i.e., r′(x)− r(x) > 0.

(c) The change in potential satisfies Φ′ − Φ ≤ 3(r′(x)− r(x)).

(d) The relation 1 + (Φ′ − Φ) ≤ 1 + 3(r′(x)− r(x)).

2. If a zig-zig is done:

(a) The new rank of x is the same as the old rank of z, i.e., r′(x)− r(z) = 0.

(b) The new rank of x is greater than the new rank of y, i.e., r′(x) ≥ r′(y).

(c) The change in potential satisfies Φ′ − Φ ≤ r′(x) + r′(z)− r(x)− r(y).
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(d) The old rank of y was greater than the old rank of x, hence r(x) + r(y) ≥ 2r(x).

(e) The change in potential satisfies Φ′ − Φ ≤ r′(x) + r′(z)− 2r(x).

(f) For positive a, b with a+ b ≤ 1, we have log a+ log b ≤ −2. (Use the base-2 logarithm. My
approach to this step requires some calculus, so if you haven’t taken a calculus class yet feel
free to just assume this.)

(g) r(x) − r′(x) = log(s(x)/s′(x)) and r′(z) − r′(x) = log(s′(z)/s′(x)). (You can assume the
reader is familiar with standard properties of the logarithm.)

(h) s(x) + s′(z) ≤ s′(x)

(i) (s(x)/s′(x)) + (s′(z)/s′(x)) ≤ 1.

(j) 2 ≤ (r′(x)− r(x)) + (r′(x)− r′(z)).

(k) The potential function satisfies 2 + (Φ′ − Φ) ≤ 3(r′(x)− r(x)).

3. If a zig-zag is done:

(a) The new rank of x is the same as the old rank of z, i.e., r′(x)− r(z) = 0.

(b) The change in potential satisfies Φ′ − Φ ≤ r′(y) + r′(z)− r(x)− r(y).

(c) The old rank of y was greater than the old rank of x, hence r(x) + r(y) ≥ 2r(x).

(d) The change in potential satisfies Φ′ − Φ ≤ r′(y) + r′(z)− 2r(x).

(e) r′(y)− r′(x) = log(s′(y)/s′(x)) and r′(z)− r′(x) = log(s′(z)/s′(x)).

(f) (s′(y)/s′(x)) + (s′(z)/s′(x)) ≤ 1.

(g) (r′(y)− r′(x)) + (r′(z)− r′(x)) ≤ −2.

(h) The potential function satisfies 2 + (Φ′ − Φ) ≤ 2(r′(x)− r(x)) ≤ 3(r′(x)− r(x)).

3.7.2 Lecture 7/17

Splay Trees and Union-Find

Problem 34: Show the result of the following sequence of splay tree operations: insert 7, insert 8,
insert 6, insert 4, search for 5, search for 7, insert 1, insert 2, insert 0, insert 3, split at 6, join the two
trees.

Problem 35: Show the union-find forest that results after each operation in the following sequence of
union-find operations on integer sets: union(1, 2), union(3, 4), union(1, 4), union(4, 5), same-set?(3, 8),
union(6, 7), union(8, 6), same-set?(6, 1).

Problem 36: (Adapted from Sleator and Tarjan) Recall the terminology and results of Problem 4. We
are now going to consider the amortized time of a sequence of n splay-search operations in a tree with
n nodes. Our cost model will assume that a single rotate costs 1 unit of time to perform, a splay-zig-zig
costs 2, and a splay-zig-zag costs 2; everything else is free (this is reasonable because you need to rotate
proportional to how far down the tree you are, which hence also captures the search time).

1. Let t be the total cost of splaying a node x and ∆Φ be the change in potential before and after
splaying node x all the way up to the root. Prove that t+∆Φ ≤ 1 + 3(r′(x)− r(x)), where r′(x)
is the rank of x after the entire splaying operation is done and r(x) is the rank of x before the
splaying operation starts.

2. Let x be any node in any BST of size n. Prove that − log n ≤ r(x) ≤ 0.

3. Prove that t+∆Φ ≤ 1 + 3 log n.
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4. Consider any sequence of n splay-search operations starting from a BST with n nodes in it.
Conclude that the amortized time per splay-search operation in that sequence is O(log n).

For the final part, you might need the following fact: you can weaken the first condition of the
potential method theorem from lecture to just |Φ(si)− Φ(s0)| = O(nf(n)).

Hint: Hint(s) are available for this problem on Canvas.

Problem 37: In class we told you that the union-find algorithm shown has O(α(n)) amortized per-
operation time for a sequence of n operations. Unfortunately, proving that is extremely tedious. What
we’re going to do in this problem is analyze a simplified version of that algorithm, and show that even
removing many of its optimizations, it still performs quite well.

The union-find algorithm we saw in class had two optimizations: (1) we always made the tree
with more items in it the root during a join, and (2) we did path compression where we update the
parent pointers every time we did a find-root. Consider modifying that union-find algorithm to remove
optimization (2), i.e., no longer do path compression. Furthermore, instead of always making the tree
with more items in it the root, make the tallest of the two trees the root. Prove that this modified
union-find algorithm has worst-case O(log n) time per operation in a sequence of n operations.

Then, prove that the original union-find algorithm has worst-case O(log n) time per operation in a
sequence of n operations. I don’t think you can prove this as a corollary of the above; rather, you will
hopefully find that your proof from above should either work directly on the original union find algorithm,
or can be made to do so with few modifications. If not, make sure to take a peek at the hint.

Hint: Hint(s) are available for this problem on Canvas.

Problem 38: Suppose instead of the special zig-zig and zig-zag splay tree operations, we did something
a little simpler: until the node in question is the root, either rotate left or rotate right around its
immediate parent to move it further up the tree by one. This is called a move-to-root tree, and was
proposed before splay trees were discovered (see Allen and Munro, 1978).

1. Draw a tree and pick a node x where splaying x and move-to-root’ing x result in different trees.

2. Prove that move-to-root trees do not have the same amortized access property that we proved for
splay trees in Problem 7 by constructing a tree with n nodes and sequence of n lookups that takes
Θ(n2) total time.

3. Try the same sequence of lookups on a splay tree to get an intuitive understanding of why the
same worst-case behavior doesn’t happen.

4. Explain why the amortized time bound we saw above for splay trees doesn’t apply to move-to-root
trees. (You don’t need too much for this part — just point to a step in the proof from problem 4
or 7 that doesn’t apply to move-to-root trees.)

Hint: Hint(s) are available for this problem on Canvas.

3.7.3 Lecture 7/19

Hashing and Risky Hash Sets

Problem 39: Here’s another practically unlikely, morally dubious, yet pedagogically interesting sce-
nario: Imagine some careless developer decides to use the “risky hash set” we saw in lecture to keep
track of the set of people (represented by numerical user IDs) who have paid for their streaming service.
Even worse, they’re using the following näıve hash function: take the remainder after dividing the user
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ID by 216. Now, imagine you have a noisy neighbor who likes to watch that streaming service way too
late into the night at way too high a volume. You know the streaming service is using this risky hash
set with this näıve hash function, you know your neighbor’s user ID is 123, and the streaming service
allows you to choose your own ID when you sign up (as long as it isn’t already taken). What could you
do to bump your neighbor off of their ability to stream (at least until they contact customer service)?

Problem 40: (Carter and Wegman)

1. Prove that, for any prime p and numbers 0 ≤ x, y, r, s < p, with x ̸≡ y and m ̸≡ 0 the equations

xm+ n ≡ r, ym+ n ≡ s

have a unique solution for the variables n, m mod p.

2. Fix a number b ≤ p and another number 0 ≤ s < p. Explain why there are at most p⌈p
b ⌉ choices

of 0 ≤ r, s < p satisfying r ≡ s mod b.

3. Define the hash function hm,n(x) := ((xm + n) mod p) mod b. This hash function maps values
from the range 0, 1, . . . , p− 1 into the buckets 0, 1, . . . , b− 1. If x ̸= y, then for how many choices
of 0 < m < p, 0 ≤ n < p is hm,n(x) = hm,n(y)? (An overapproximation is fine; no need for an
exact count.)

4. Explain why, if the streaming service used this hash function with m and n chosen randomly and
kept secret from everyone, it would make it a lot harder to carry out your plan in problem 10.
(More generally, you should explain why using the hash function hm,n in a risky hash set makes
the analysis we did in lecture about hash collisions ‘correct’ even though the function hm,n isn’t
really chosen from the set of all possible hash functions.)

For part 1, you can use the fact that Zp is a field. In this context, the important consequence of that
fact is that, if a ̸≡ 0, then there exists a unique value a−1 ∈ {1, 2, . . . , p− 1} such that aa−1 ≡ 1 mod p.

Hint: Hint(s) are available for this problem on Canvas.

Problem 41: (I originally saw this problem somewhere in Knuth, but can’t find it now. Will update if
I find a reference.) Given a set V of possible values, we use the term shuffler function to refer to any
bijection on the values in V , i.e., s : V → V a. Suppose instead of a hash function your program begins
by picking a random shuffler function s. Show how you can use this shuffler function to construct a
BST-like data structure with good expected depth. In other words, for any sequence of insertions, if
s is chosen uniformly at random from the set of all shuffler functions, the expected amortized time to
perform any sequence of n insertions should be O(log n) per operation.

(Alternatively, you can prove the expected depth of the tree should be O(log n). But that uses a result
we haven’t seen explicitly in lecture.)

Your data structure should be very similar to a BST, meaning, values should be associated with nodes
in some tree. Your nodes should only need fields for the value, left-child, and right-child pointers, no
additional space, e.g., for storing a red/black color. The one caveat is that your data structure only
needs to support insertion and searching quickly — it’s OK if operations like find-min, find-max, and
deletion can make things arbitrarily slow. Also, you’re welcome to reference theorems from lecture.

aIf you find this definition interesting, you may want to read about blockciphers!
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3.8 Lecture 7/22 Notes: Hash Tables With Collision Resolution

Last week we saw risky hash sets, which allowed O(1) operation times but required Θ(n2) space and had
some chance of dropping items (but the expected number of such items was O(1)).

Today we’ll see how to fix the latter two problems. In particular, we’ll use only Θ(n) buckets rather than
Θ(n2). Unfortunately, that means we will expect(

n

2

)
1

n
=

n− 1

2

collisions! Crucially, however, those collisions are spread out among Θ(n) buckets: in fact, then, we only
expect about

n− 1

2

1

n
=

n− 1

2n
≈ 1

2

collisions per bucket. So we need to try and take advantage of this property.

3.8.1 Revisiting the Problem

Recall that the main problem was as follows: suppose, for example, you have a RHS with 4 buckets and the
hash function x mod 4. Then, if I insert 4, 5, 8, the RHS will have to bump 4 out of its place to insert 8!

3.8.2 Big Buckets and Separate Chaining

The most natural way to solve this problem is to just make our buckets bigger, so they can store multiple
items in the case of collisions. But we don’t really know ahead-of-time a hard limit on how big these buckets
will have to be (e.g., if we get very unlucky, we could have all the items land in the same bucket!). So if we
want to be really resilient, we need the buckets themselves to be represented as something like a linked list,
so we can add arbitrarily many items in that bucket as needed.

This leads to the idea of separate chaining.

1 def insert(buckets, v):

2 if search(buckets, v): return

3 (maybe rehash)

4 buckets[hash(v)].prepend(v)

1 def search(buckets, v):

2 for node in buckets[hash(v)]:

3 if node.value == v:

4 return True

5 return False

1 def delete(buckets, v):

2 for node in buckets[hash(v)]:

3 if node.value == v:

4 delete node from list

5 (maybe rehash)

In our earlier example, instead of bumping 4 out, we’d just make a linked list with 8 and 4 both.



104 CHAPTER 3. SEARCHING

Knobs and Measures for Separate Chaining Hash Tables

1. What’s the load factor? (Number of items divided by number of buckets.)

2. How frequently do you rehash? For separate chaining, we’ll assume you rehash to keep the load factor
between 0.25 and 1.0, i.e., Θ(n) buckets for n items.

3. What’s the expected chain size? Max chain size? These correspond to search times.

4. What hash function(s) are used?

Black-Box Expected Lookup Time

Suppose some sequence of insertions is determined then a separate chaining hash table is used to store those
insertions with load factor 1 (n buckets, n items) and a randomly chosen hash function. Suppose you are
allowed to pick one value x and search for it, but you have to pick this value without knowing what the hash
function is or what the hash table itself looks like. In this black-box setting, what is the expected time to
lookup x?

First, note that it doesn’t matter what x is except for whether or not it was inserted.
First, assume x was not inserted. Then it hashes to a random bucket, so our question is, what is the

expected length of the chain in that bucket? The chance any given value landed in the first bucket is 1
n

independent of the others, so the expected number that land in that bucket is

n

n
= 1,

hence the expected lookup time is O(1).
On the other hand, if x was inserted, then we know for sure at least it exists in the bucket, but we can

repeat the analysis on the remaining n− 1 items to see that the expected number that land in that bucket is

1 +
n− 1

n
≤ 2 = O(1).

So in either case, the expected lookup time is O(1).

White-Box Worst-Case Lookup Time

Suppose instead you are allowed to pick x knowing the hash function, i.e., after looking at all the buckets
and seeing which is most full. What is the worst-case expected lookup time in this white-box setting? Well,
to maximize the time taken you should pick a value that lands in the bucket with the longest chain. So let’s
ask: is the expected value of the longest chain also O(1)? Surprisingly, the answer is no!

You’ll investigate this a bit further on the homework, but let’s work through a little bit here. The
probability of any given bucket having a chain of length at least k is

n∑
i=k

(
n

i

)
1

n

i(n− 1

n

)n−i

≥
(
n

k

)
1

n

k (n− 1

n

)n−k

≥
(
n

k

)
1

n

k (n− 1

n

)n

→ n!

k!(n− k)!

1

nk
e−1

≈ nk

k!

1

nk
e−1 (Not quite correct! See HW.)

=
1

k!e
.

On the homework you’ll see that the approximation we made is not quite valid, because k is not a constant.
But you’ll also see that the rest of this argument works out. Anyways, if you take k = β(n) where β is an
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continuous, monotonic inverse of n!, then this slightly wrong analysis tells us we should expect about

n
1

ne
=

1

e

of the bins to have at least β(n) balls. But β(n) ̸= O(1), so in fact, the worst-case expected lookup time in
this setting is not O(1).

Conclusion

Separate chaining gives us pretty much everything we want:

1. O(n) space overhead, and

2. Expected O(1) lookup times.

3.8.3 Linear Probing

One major issue with separate chaining is that linked lists are terrible for cache performance. Linear probing
is an approach that has much better cache locality. The idea is simple: if you try to insert into a bucket
that’s already full, try the next bucket!

1 def lp_insert(buckets, v):

2 if search(buckets, v): return

3 (maybe rehash)

4 b = hash(v)

5 while buckets[b] not empty: b = next bucket

6 buckets[b] = v

1 def lp_search(buckets, v):

2 b = hash(v)

3 while buckets[b] != v and buckets[b] not empty and not looped around:

4 b = next bucket

5 return buckets[b] == v

1 def lp_delete(buckets, v):

2 if not search(buckets, v): return

3 b = hash(v)

4 while buckets[b] != v:

5 b = next bucket

6 buckets[b] = (tombstone)

7 (maybe rehash)

On the homework you’ll consider how frequently rehashing needs to be done.

White-Box and Black-Box Worst-Case for Linear Probing With Load Factor 1

Let’s revisit our original setting; n buckets for n items, no tombstones. What’s the worst case now if we try
to look something up? Surprisingly, if the thing we’re looking up is not in the table, the worst case is now
extremely bad! That’s because we’ll have to iterate through the whole table to determine that the value is
not in it!

So the worst-case behavior for the load-factor-one setting with linear probing is actually Θ(n).
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Primary Clustering

Unfortunately, this is a problem even at lower load factors. Define a run to be a contiguous sequence of
filled-in buckets (possibly wrapping around the table). The worst-case lookup time corresponds to the length
of the longest run. We won’t analyze that quantity in this class, but one thing to note is the following: on
each insertion, a run of length k is twice as likely to be extended than a run of length k/2. This “rich get
richer” phenomenon means that we some runs may get absurdly long, causing quite poor worst-case lookup
times even with smaller load factors (according to Bender et al., according to Knuth there’s a bigger issue
at play).

Less Extreme

One thing that’s important to know is that I’ve probably made this scenario sound worse than it is; my
understanding is that, as long as you keep the load factor below 1

2 (or any constant < 1) expected lookup
times remain O(1). So really it just means you need to overprovision space by a small constant factor; not
a bad deal to have such great cache locality. In fact, compared to separate chaining, this overprovisioning is
‘free’ because separate chaining also needed an extra Θ(n) ‘next’ pointers to implement the linked lists! In
fact, recent research has shown linear probing is even better (in theory) than we used to think. Unfortunately,
it’s just not super easy to analyze.

3.8.4 Post-Lecture Ed Notes

One of your classmates mentioned this interesting hash function in a private Ed post: https://probablydance.
com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/

Personally, I’ve found djb2 works well for strings: https://doc.riot-os.org/group__sys__hashes_

_djb2.html

Knuth has an interesting discussion of the following, extremely surprising theorem and its application to
hash function design: https://en.wikipedia.org/wiki/Three-gap_theorem

The following paper makes an interesting argument that primary clustering isn’t actually as bad as people
(including Knuth!) claim it is: https://arxiv.org/abs/2107.01250

https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://doc.riot-os.org/group__sys__hashes__djb2.html
https://doc.riot-os.org/group__sys__hashes__djb2.html
https://en.wikipedia.org/wiki/Three-gap_theorem
https://arxiv.org/abs/2107.01250
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Name: Stanford ID Number:

3.8.5 Lecture 7/22 EC Question

Consider the hash table [5, 2,⊥,⊥, 3] using linear probing with the hash function h(x) = 3x mod 5. Give a
number x ̸∈ {5, 2, 3} such that inserting x takes the worst-case possible time.
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3.9 Lecture 7/24 Sketch: Quiz 2 Review

1. Meaning of bounds when some interpretation is necessary (problem vs. algorithm)

2. Red-black trees: they’re not just trees colored red/black!

3. Potential method: work through the proof one more time, this time give the slightly more general
theorem that was needed for splay trees (but they don’t need it for teh quiz).

4. Potential method: coming up with potential functions (out-of-scope, but lots of people were interested).
Key idea for some of the more trivial examples: make the potential larger the closer you get to an
‘expensive’ operation.

5. Potential method: examples HW4 problem 2, HW 4 problem 3

6. Union find: friendship islands example has a better solution that we’ll see in the graphs section!
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3.10 Week 5 Problem Sheet

Since we have the quiz on Friday, you are only required to turn in two problems for this week.

3.10.1 Lecture 7/22: Hash Sets and Hash Maps

Problem 42: Assume a hash table for storing integers uses the näıve hash function h(x) = x mod b
where b is the number of buckets. For each collision resolution method (separate chaining and linear
probing), describe a sequence of n insertions having worst-case per-operation asymptotic time and
compute that worst-case per-operation time.

For simplicity, you can assume the hash table starts with b = 2n empty buckets and it never rehashes.
Remember that our hash table pseudocode includes a search before every insertion.

Problem 43: Assume you have a hash table using either separate chaining or linear probing. Explain
how to implement the following ability: at any point, the user may change into “iteration mode” where
they can repeatedly call a NextItem method to iterate through all the items in the hash table. You
can assume they don’t perform insertions or deletions while in iteration mode. If there are n items in
the hash table and Θ(n) buckets, the amortized time to call NextItem n times (i.e., iterate through all
the items) should be O(1) per call. Your modification should require only O(1) additional space. Also
explain why your modification would not work on the risky hash set we saw in class with quadratic
overprovisioning, i.e., n2 buckets, even if there were no collisions.

Problem 44: In practice, time is often dominated by cache misses. In a separate chaining hash table,
the number of cache misses is roughly one (for reading the pointer stored in the bucket) plus the number
of unique linked list nodes you have to read from after that. For each of the following two ideas, assume
the hash table contains n items then compute: (i) the expected number of cache misses after searching
for a missing value and (ii) the total expected space usage (assume each bucket is a one-word pointer
to a linked list node, and each linked list node contains one word per value stored and one word for the
pointer to the next node).

1. Make each linked list node store two values, and assume there are n buckets (load factor one).

2. The linked list nodes only store one value, but you have 2n buckets (load factor one half).

Note: getting exact counts for the first approach will be difficult; instead, try to get good enough bounds
that you can state with confidence which one is better. More generally, this problem is a bit of an “algebra

playground;” see the hint if you got lost in the sandbox! You can use the approximation
(
n−1
n

)n−O(1) ≈
e−1 without proof if needed.

Hint: Hint(s) are available for this problem on Canvas.

Problem 45: Explain how to determine when to rehash in the linear probing scheme. You should
guarantee that the load factor stays between 1

4 and 1. The expected time should be O(1) amortized
over a sequence of n operations; for simplicity, you can assume that rehashing is the only operation that
takes any time.

If you have extra time, try to modify your approach so the load factor stays between 1
4 and 1

2 . Why
is this extremely desirable in linear probing, rather than letting the load factor get all the way up to 1?

Hint: Hint(s) are available for this problem on Canvas.
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Problem 46: (Adapted from the CMU Spring 2011 Randomized Algorithms class blog.) In lecture we
saw, for separate chaining, that the probability of any given bucket having a chain of length at least k
was greater than

(
n
k

)
1
nk

(
n−1
n

)n
. We then performed an analysis that relied on the dubious assumption(

n
k

)
≈ nk/k! even when k is a function of n. Instead, prove with more care the following:

1. The limit
(
n−1
n

)n → e−1 as n → ∞. (My solution to this part requires some differential calculus;

if you haven’t taken calculus before, feel free to assume
(
n−1
n

)n ≈ e−1 for the rest of this problem.)

2. That, when a ≥ b > 1, a
b ≤ a−1

b−1 .

3. That
(
n
k

)
≥
(
n
k

)k
and so

(
n
k

)
1

nke
≥ 1

kke
.

4. That, when β(n) is chosen such that β(n)β(n) = n, we expect at least a constant number of buckets
in a separate chaining hash table with n buckets and n items to have chains of length β(n).

Hint: Hint(s) are available for this problem on Canvas.

Problem 47: Suppose you have access to an API running over the internet that implements a hash table
(i.e., has search/insert/delete endpoints) using separate chaining, and assume you have a stable enough
connection that you can reliably time how long it takes the server to finish each of those operations.
Suppose the hash table starts off empty and you are able to perform O(n) operations. Explain how you
can, with at least constant probability, within O(n) operations, find some operation that consistently
takes Ω(β(n)) time for β(n) ̸= O(1).

(It’s fine if you only prove that operation takes Ω(β(n)) time on expectation, rather than with at
least constant probability. If you want to try to prove it has at least constant probability, see the hint.)

Hint: Hint(s) are available for this problem on Canvas.

3.10.2 Lecture 7/24: Review

Problem 48: Explain how to modify splay trees to keep track of the sum of all the values in the splay
tree. Your modification should also work for the split and join operations, e.g., after split it should be
possible to compute the sum of the values in each of the two resulting trees.

Problem 49: Explain how to implement the same NextItem operation as described in Problem 2,
except for BSTs. You can assume the BST has parent pointers, i.e., given a node in the BST you can
find its parent in O(1) time (in addition to its value, its left child, and its right child, all also in O(1)
time). Your NextItem method should iterate through the items in sorted order, and you should prove
that it takes O(1) amortized time per call to iterate through the entire tree, regardless of how balanced
the original tree is. Finally, determine whether the worst-case time per call is also O(1).

Hint: Hint(s) are available for this problem on Canvas.

Problem 50: Explain in different words (e.g., using phrases like “For all algorithms . . . ” or “There
exists an input . . . ”) what the following statements most likely mean:

1. Problem X requires Ω(n) space.

2. Problem X requires O(n2) space.

3. Algorithm Y has worst-case time O(n3).
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4. Algorithm Y has worst-case time Ω(n).

5. Data structure Z has worst-case per-operation time Θ(n2).

6. Data structure Z has amortized per-operation time O(n2).
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3.11 Study Guide for Second Quiz (Searching)

While we don’t expect any changes, everything in this document is tentative and subject to change by an-
nouncement from the instructor.

Topics

The following topics are in-scope:

1. BSTs and BST operations

2. AVL tree and 2-3 tree definitions and insertion operations; deletion not needed for either, but you
should know the running time of deletion.

3. Converting between 2-3 trees and red-black trees.

4. Meaning of amortized analysis, the direct method, and the potential method.

5. Amortized analysis of dynamic array.

6. Splay tree operations (splay, search, split, join, insert, delete) and amortized time bound (not proof,
just meaning).

7. Union-find algorithm and union-find amortized bound (not proof, just meaning).

8. Direct addressing, expected number of collisions in a risky hash set, rehashing idea.

9. Usefulness of random hash functions vs. pre-chosen hash functions.

10. Separate chaining, linear probing, and the analyses we do in lecture for them.

Having done the homework questions might be useful in answering quiz questions, but we will write the
quiz assuming you haven’t done the homework.

Question Templates

While there may be a few exceptions, we’ll try to stick to the following question templates for the quiz:

1. Given an algorithm using one of the data structures we talked about, how long does it take to run?

2. Question(s) proposing a slight modification to one of the algorithms we’ve seen in lecture, then asking
things like: Is it still correct? What is the effect on running time?

3. Question(s) where some type of input is described and we ask things about the behavior (e.g., running
time) of a particular algorithm on that type of input.

4. Question(s) proposing a scenario and then asking you to compare + contrast different search data
structures for that scenario, or design an algorithm using the search data structures we’ve seen for that
scenario.

5. Question(s) proposing an algorithm and then asking you to analyze the amortized time using either the
direct or potential method. In the potential method case, we will provide you the potential function
to use.

6. Question(s) asking you to simulate some of the algorithms from lecture (or modified versions of those
algorithms) on an example input.

Questions will be easier than the average homework question, and probably a little bit harder than the
average post-lecture EC credit. The motivation for having so many questions is to ensure that no one
question has an outsized impact on your grade.
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Graphs and Algorithm Design

4.1 Lecture 7/29: Welcome to Graphs!

The following scenarios all have something in common:

1. A map showing how towns are connected by roads.

2. The Web, where webpages can connect to other webpages by hyperlinks.

3. The Facebook social network where people can be friends with other people.

4. A university course offering, where courses can have other courses as prerequisites.

What is it? They are all made up of objects (towns, webpages, people, courses) and pairs of objects can
be related in some way (roads, links, friendship, prerequisites).

For the next two weeks, we’re going to study algorithms that can be applied to all of these problem
domains. To do so, we need some general way of representing what is common between all of them. This is
the notion of a graph.

Definition 17. A graph is a set V of nodes (also called vertices) and a function E : V × V → R ∪ {⊥} of
edge weights.

The ‘nodes’ are the objects (towns, webpages, people, courses), and the edge weights are the relations
(roads, links, friendship, prerequisites). Generally, if there is no relation between nodes a and b then we set
E(a, b) = ⊥. Otherwise, we set E(a, b) to be the “amount of relation” between them; in the map setting, for
example, E(a, b) might be the length of the road taking you from a to b. We usually say there “is an edge”
from a to b only when E(a, b) ̸= ⊥.

Note: there are many equivalent definitions of a graph. We’ll stick to this one for lecture, but it doesn’t
matter too much what you use.

4.1.1 Interacting With Graphs

A graph is a mathematical object; it only really exists in our imagination. But computers are real, physical
things, so we need to ask: how should we represent a graph in our computer programs? There are a number
of options, including:

1. The adjacency matrix approach: store a big n×n-sized matrix where entry i, j has the value of E(i, j).

2. The adjacency list approach: store for each node a the list of all other nodes b that it has an edge to,
i.e., Out(a) := {b | E(a, b) ̸= ⊥}. We often also assume that similar lists are available for all incoming
edges, i.e., In(a) := {b | E(b, a) ̸= ⊥}.

113
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In this class we’ll mostly assume the adjacency list approach if nothing else is stated. But you should be
aware that different representations may be better in different contexts. In other words, the main assumption
we’ll make is that you can iterate through the outgoing and incoming edges of a node in O(1) time per edge.
This is generally a pretty reasonable assumption; sometimes you have to play pointer tricks to get it to work
but we won’t worry about those implementation details in this class. For cases where the values of edges are
important, you can imagine storing the out list in an extended form that also includes the weight of that
edge, e.g., Out(a) := {(b, E(a, b)) | E(a, b) ̸= ⊥}.

4.1.2 Graph Parameters

Given a graph, there are a number of questions we can ask about it.
In many settings there won’t be any need to distinguish between “amounts of relation,” e.g., course b

either depends on a or it doesn’t! In those cases we’ll just have E(a, b) = ⊥ or 1, and we’ll call those graphs
unweighted.

Definition 18. A graph is unweighted if for every a, b ∈ V , E(a, b) ∈ {⊥, 1}. (In this scenario, we usually
draw the edges without numbers on top.)

In many scenarios, the relation is symmetric: if I’m Facebook friends with you, then you must be Facebook
friends with me. We’ll call such graphs undirected.

Definition 19. A graph is undirected if for every a, b ∈ V , E(a, b) = E(b, a). (In this scenario, we usually
draw the edges without arrows.)

Some graphs are dense: they have a lot of edges. Other graphs are sparse: they have relatively few edges.

Definition 20. Let n be the number of vertices in a graph and m be the number of edges a graph is sparse
if m = O(n) and it is dense if m = Θ(n2).

(Note: this definition only really makes sense if you apply it to a sequence of graphs, not a single graph,
because otherwise the asymptotic notation is meaningless. But we still often talk about the sparsity of a
single graph in informal terms.)

4.1.3 BFS and DFS: What Can I Reach?

One of the most fundamental questions you can ask about a graph is the following: if I start at node x and
walk along edges what other nodes can I reach? In the map setting, for example, this corresponds to asking
what other cities I can reach from town x.

We can solve this problem like so:

1 def explore(graph, start):

2 reachable = set()

3 frontier = set({start})

4 while frontier:

5 node = frontier.pop()

6 reachable.insert(node)

7 frontier.insert_all(graph.Out(node) - reachable)

8 return reachable

The idea is to start at x and explore paths through the graph one-by-one. We do so by keeping track of
two sets:

1. A set of nodes that we can definitely reach from x (the “reachable set”),

2. And a subset of those nodes (the “frontier”) that we have not yet explored to see what is reachable
from them.

Theorem 25. The reachable-from algorithm correctly returns all the nodes that can be reached from start.
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Proof. (Sketch) Let R be the reachable set and F be the frontier set. The algorithm maintains this invariant:

1. start ∈ (F ∪R), and

2. For any node x ∈ R, we have Out(x) ⊆ (F ∪R).

3. For any node x ∈ R there exists a path from start to x.

Thus, when the loop exits because F = ∅, we know:

1. start ∈ R;

2. For any x ∈ R, we have Out(x) ⊆ R;

3. For any x ∈ R, there is a path from start to x

Hence, every node in R is indeed reachable from start and we just need to prove the other direction, i.e., that
any reachable node is in R. Let x be such a reachable node and consider any path p1 = start, p2, . . . , pn = x.
By property (1) we know p1 ∈ R, then by property (2) we know p2 ∈ R. Applying property (2) repeatedly
we see p3 ∈ R, p4 ∈ R, . . . , pn = x ∈ R, as desired. (Induction can be used to prove the . . . part slightly
more formally/rigorously.)

Running Time

Each node is visited once by the loop, and each loop iteration does work proportional to the number of
outgoing edges from that node. Hence, the total time is bounded by O(n +m) where m is the number of
edges in the graph.

In fact, if you’re careful, you can argue that it’s O(1 + m) time. Why is this? Other than O(1) time
setting up the reachable/frontier sets at the beginning, the time is dominated by inserting edges on line 7.
So consider any edge a → b. That edge a → b is processed at most one time, on line 7, when the outer loop
processes a. So the total time is O(1) +O(m) = O(1 +m).

Note this only makes a difference asymptotically when m < n, i.e., when the graph is very sparse and so
you have more nodes than edges. In that case, your ‘explore’ routine won’t actually visit every node, which
is how you can avoid counting the O(n). For example, consider the graph and start node A:

A

B

CD

E

The running time of explore is ≈ 1, because it only visits node A!

BFS and DFS

We’ve left one big thing ambiguous in the above pseudocode: when you pop from the frontier, which node
from the set do you pop? There are two common choices:

1. If you pop the most-recently inserted item, then the set essentially becomes a LIFO stack, and the
resulting algorithm is called depth-first search (DFS).

2. If you pop the least-recently inserted item, then the set essentially becomes a FIFO queue, and the
resulting algorithm is called breadth-first search (BFS).

I think in 106B you saw implementations of both queues and stacks; if not, you can imagine using a doubly
linked list and inserting to either the front or the back depending on what behavior you want.

Both variants are correct. BFS prioritizes visiting all of the nodes close to the start before it checks out
further-away nodes, while DFS kind of just “goes for it.” Which you use will depend on the application, and
a lot of times it doesn’t really matter.

Note: BFS/DFS rely on the following behavior of stacks/queues:
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1. If you reinsert an item that is already in the stack, then that item moves to the top of the stack (i.e.,
it will be popped next).

2. If you reinsert an item that is already in the queue, then that item keeps its place in the queue.

You can remember these rules by assuming items are ‘eager’ to be popped, hence they don’t want to give
up their spot in a queue (line), but would like to jump up to the top of the stack if offered.

Algorithm vs. Template

This is a good place to talk about the fact that BFS/DFS are not so much ‘algorithms’ as they are ‘algorithm
templates.’ For example, frequently you’re not worried about getting the set of every node that reachable,
rather you just want to know if some specific node is reachable (“can I get to Athens?”). So you might modify
the loop we saw above to stop if it ever encounters the Athens node. These are the sorts of modifications
you’ll need to get practiced with making, because these algorithms rarely show up in exactly the form I’ve
described above, rather, they are sort of “morally the same thing” with some small changes.

4.1.4 Topological Sort

We’ll end by talking about one more graph problem: topological sort. Consider the course prerequisites
example. One question you might ask is: what’s an order I could take all classes in so that I meet all
prerequisites before taking a class?

The following algorithm solves this problem:

1 def toposort(graph):

2 (make a temporary copy of graph)

3

4 ordering = []

5

6 all_prereqs_met = set()

7 for node in graph:

8 if graph.In(node) is empty:

9 all_prereqs_met.insert(node)

10

11 while all_prereqs_met is not empty:

12 node = all_prereqs_met.pop()

13 ordering.append(node)

14 for other in graph.Out(node):

15 remove edge node->other

16 if graph.In(other) is now empty:

17 all_prereqs_met.append(other)

18

19 return ordering

The fundamental idea is to keep track of the list of classes where you meet all the prerequisites. At each
step, you pick one of those nodes to be the next class you take. Delete all the outgoing edges for that node,
since now all of those prerequisites are met for you; if any nodes now have all their prerequisites met, add
them to the set. Then repeat!

In general, such an order is called a topological sort :

Definition 21. A topological sort (often shortened to toposort) of a graph is an ordering of its nodes such
that if there is an edge a → b, then node a must appear before node b in the ordering.

Theorem 26. Given an acyclic graph, the toposort algorithm returns a toposort of the nodes.

Proof. (Sketch) You can use the following invariant for the main loop: the nodes (classes) in all prereqs met

are exactly those classes for which all their prerequisites would have been met after taking the classes already
in ordering.
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Running Time of Toposort

What about the running time? Let n be the number of nodes and m the number of edges. Each edge a → b
is visited exactly once on line 15, namely, when its source node a is deleted. So line 15 runs O(m) times
total. Lines, e.g., 12 and 13 run exactly once per node, hence they run O(n) time total. A similar analysis
accounts for the other lines, hence the overall running time is O(n+m).

Using Toposorts

Toposorts are quite nice: they essentially turn the graph into a list! Hence, A Good Rule of Thumb:
If you know you’re working with an acyclic graph, first get a toposort and see if that helps you solve your
problem.

4.1.5 Algorithm Design

These next two weeks are going to focus pretty heavily on algorithm design. For example, your suggested
homeworks will pretty much just involve doing leetcode on your own. In general, there is no ‘algorithm’
or ‘procedure’ for solving these sorts of problems: you just have to try lots of things and try to rule out
approaches that won’t work as quicksy as possible. It does help to practice lots and lots and lots of these
sorts of problems so that you can start to see patterns that might hint at what approach is most useful.
Also, I suggest always starting a problem by asking yourself the following questions: Is there a graph here?
If so, what precisely are the nodes and edges? Then, if you have a well-defined graph, you can start applying
techniques like BFS/DFS/toposort that we’ve started to see today and ask whether they get you any closer
to your goal.

4.1.6 Post-Lecture Ed Notes

Welcome to graphs! Here’s some code implementing BFS, DFS, and toposorting, and some skeleton code if
you want to practice implementing BFS/toposort . . . Also, note:

• For graphs there are many different ways you could represent the graph; in the above code, I’ve tried to
stick pretty close to the adjacency list representation we described in lecture. But in general you might
imagine lots of other implementation ideas, e.g., using a hashmap to store a mapping from (a, b) -¿
E(a, b). Each choice of implementation/graph representation will lead to different algorithms and time
complexity. For each algorithm, you could ask yourself: if I implement the graph using representation
X, how efficient would the algorithm be?

• In the toposort code, I’ve slightly modified the algorithm so that it doesn’t need to make an explicit
copy of the whole graph. You may find this modification interesting.

• I used (essentially) a direct addressing table to store sets; in many applications, you can store a set by
adding an extra bit to each node in the graph that indicates whether or not it’s in the set.

• As usual, the rest of this note is out-of-scope.

(An anonymized student) asked an interesting question: if you’re only interested in taking, say, CS 161,
can you find an sequence of classes that gets to 161 as fast as possible? The algorithm for this that seems
most natural to me is the following: (1) First, do a ”backwards BFS/DFS” from CS 161 to figure out all of
its prerequisites (including transitive prerequisites, like 106A). (2) Then, do a toposort but do it only within
the subgraph consisting of CS 161 and its transitive prerequisites.

The result will be a shortest-length possible sequence of classes you need to take that respects all pre-
requisites and includes CS 161. It is shortest possible because it includes only (transitive) prerequisites of
CS 161, and you must indeed take all of those prerequisites before taking 161.

(Equivalently, you can find a toposort on the whole graph, then remove any classes that are not (transitive)
prereqs for 161.)

Also note that the course-planning problem gets a lot more complicated when there are more general
prereq constraints (e.g., ”you must have taken either X or B, in addition to C”). You could probably find a
minimal extension of this problem that is NP-complete; reducing from 3SAT might be the way to go.
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Name: Stanford ID Number:

4.1.7 Lecture 7/29 EC Question

What would happen if you try running the toposort pseudocode on a graph that has a cycle?
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4.2 Lecture 7/31: Shortest Paths and Dynamic Programming

4.2.1 Clarify Ambiguity from DFS

Note on Monday’s lecture: BFS/DFS rely on the following behavior of stacks/queues:

1. If you reinsert an item that is already in the stack, then that item moves to the top of the stack (i.e.,
it will be popped next).

2. If you reinsert an item that is already in the queue, then that item keeps its place in the queue.

You can remember these rules by assuming items are ‘eager’ to be popped, hence they don’t want to give
up their spot in a queue (line), but would like to jump up to the top of the stack if offered.

4.2.2 Terminology for Today

• Path: sequence of nodes p1, . . . , pk connected by edges. (Often paths are assumed to be acyclic; we
won’t rely on this assumption explicitly today but you can if you’d like.)

• Length of path: sum of the weights of the edges p1 → p2, p2 → p3, etc.

• Shortest path between x and y: path starting at x and ending at y with minimal length. (We’ll assume
unique, but all our analysis will work if nonunique too.)

• Distance between x and y: length of the shortest path between those two.

4.2.3 Today’s Lecture

On Monday we saw the explore routine, which lets us find all the nodes that can be reached from a specific
start node. However, explore only tells us which nodes are reachable from the start node; it doesn’t tell us:
how to get there and how far away those nodes are. For example, in the map scenario, we may want to
know not just what cities we could possibly drive to, but which of those we can get to the fastest and how
we should do so.

Today we’ll talk about algorithms that solve this more general problem.

Problem 1. The single-source shortest paths (SSSP) problem is to determine, given a start node s, what
the shortest path to every other node in the graph is and how long those paths are.

Here the length of a path through the graph is the sum of the weights on the edges in the path. (Insert
example in lecture.)

We’ll talk about two SSSP algorithms today, Dijkstra’s and Bellman-Ford. Both algorithms have the
same structure:

• They keep track of a distance table Dist, where Dist[x] keeps track of the length of the shortest path
found so far from s to x.

• They keep track of a predecessor table Pred, where Pred[x] keeps track of the last edge you should take
in the shortest path from s to x.

• At each step they choose an edge to relax on (see below).

The key operation behind both is relaxation of edges. Relaxation says: if I know how to get to a in
distance Dist[a], and there is an edge a →w b, then I should know how to get to b in distance Dist[a] + w.
Hence, if Dist[b] > Dist[a] + w, we should update Dist[b] using this shorter path.

Code for this Relax operation is shown below:

1 def relax(graph, dist, pred, edge):

2 if dist[edge.dst] > dist[edge.src] + edge.weight:

3 dist[edge.dst] = dist[edge.src] + edge.weight

4 pred[edge.dst] = edge.src
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Dijkstra’s algorithm and Bellman-Ford both call Relax repeatedly; they differ only in what order they
call Relax.

Dijkstra’s Algorithm

The first algorithm, Dijkstra’s algorithm, solves this problem quite efficiently when there are no negative
edges — if given a graph with negative edges, it might return the wrong answer.

In Dijkstra’s algorithm, at each step you find the node that is closest to your start node (excluding nodes
you’ve already visited) and visit it by relaxing on all of its outgoing edges. Pseudocode is below.

1 def dijkstra(graph, start):

2 dist = {node: infinity for node in graph}

3 dist[start] = 0

4 pred = {node: none for node in graph}

5

6 visited, not_visited = set(), set(graph.nodes)

7 while not_visited:

8 # returns the item in not_visited that has the smallest dist[node]

9 # value.

10 node = not_visited.pop_smallest_dist()

11 visited.insert(node)

12 for edge in graph.Out(node):

13 relax(graph, dist, pred, edge)

14 return dist, pred

The pop smallest dist method can be implemented in O(log n) time by storing not visited in a heap;
we assume relax is modified to update the heap as needed, hence it also takes O(log n) time.

Why does Dijkstra’s work? The key is that on every iteration, Dist has the true shortest distances to
each node considering paths that use only the nodes in visited (and perhaps the node itself), and this
invariant is maintained throughout. Additionally, once a node is placed in visited, that is the shortest path
to that node. In particular, this means Dijkstra’s algorithm visits nodes in order of distance from the start.

In this sense, Dijkstra’s algorithm is sort of like a supercharged version of BFS that visits the nearest
node first in a way that takes into account the edge weights.

Example of Dijkstra’s Algorithm (Do on board)

Correctness of Dijkstra’s Algorithm

Theorem 27. For graphs with nonnegative edge weights, Dijkstra’s algorithm solves the single-source shortest
path problem.

Proof. (Sketch; there are also proofs in CLRS and another on Wikipedia you can refer to if this doesn’t
convince you! We’re also assuming here all shortest paths are unique, but the algorithm also works if there
are nonunique shortest paths.) The following two-part invariant is maintained at every iteration of the outer
loop and for every node x:

• For any node in visited, the shortest path to it involves only other nodes in visited. In particular,
once a node is added to visited, its Dist and Pred will not change.

• Dist[x] is the length of the shortest path from start to x where all the intermediate nodes between
those two are in visited; in other words, it’s the shortest path of the form p1, . . . , pk where p1 = start,
pk = x, and p2, . . . , pk−1 ∈ visited.

Why is this the case? It can be directly checked for the first two loop iterations.
After that, suppose it is true at the start of some loop iteration; we need to ensure it’s true after popping

node, adding node to visited, and then relaxing all the outgoing edges from node.
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First, let’s prove that the shortest path to node involves only other nodes in visited. Suppose there
were some shorter path p1, . . . , pk = node where some pi ̸∈ visited. In particular, let pi be the first such
node in the path. Because the weights are nonnegative, the path p1, . . . , pi is a path with smaller distance
than p1, . . . , pk, but that means pi would have been popped as node, not pk! So that case cannot happen,
and hence we know that the shortest path to node involves only other nodes in visited.

Now let’s prove the second property: Dist[x] is the length of the shortest path from start to x going
through only nodes in visited. Well, let p1, . . . , pk = x be the shortest path to x going through only nodes
in visited. We consider three cases:

1. If node is not involved in the path, then Dist[x] will properly remain unchanged after relaxing on the
edges leaving node due to the inductive hypothesis (it already had the shortest such path).

2. If pk−1 = node, then the relaxation on the edge node → x will properly set Dist[x] to be the length of
this path.

3. If pi = node for some i < k − 1, then p1, . . . , pi, pi+1 is a shorter path to pi+1, which was already in
visited, but that’s a contradiction with the inductive hypothesis that shortest paths never change
once the node is added to visited.

Hence, the second part of the invariant also holds and we complete the proof.

Running Time of Dijkstra’s Algorithm Recall the pop smallest dist method can be implemented in
O(log n) time by storing not visited in a heap; we assume relax is modified to update the heap as needed,
hence it also takes O(log n) time. Each node (out of n nodes) is visited at most once by the outer loop, and
each edge (out of m edges) is visited at most once by the inner loop, so the total time is O((n +m) log n).
(You can improve the performance even more than this, but those optimizations are outside the scope of
this class.)

Aside: A-star Out-of-scope for this class, but if you take an AI class you’ll learn about the famous A∗

(pronounced ‘A-star’) algorithm that improves the performance of Dijkstra’s when you’re trying to reach a
specific goal node.

Bellman-Ford

Bellman-Ford avoids the issues that Dijkstra’s has with negative-weight edges; it works for any graph that
has no negative-weight cycles. Bellman-Ford is actually a bit simpler than Dijkstra’s: relax on all the edges,
and do this n times! (In fact, you can get away with n− 1 times.) Here’s the pseudocode:

1 def BF(graph, start):

2 dist = {node: infinity for node in graph}

3 dist[start] = 0

4 pred = {node: none for node in graph}

5

6 for i in len(graph.nodes):

7 for edge in graph.edges:

8 relax(graph, dist, pred, edge)

9 return dist, pred

(Note in class I think the outer loop goes from i = 1 up to i = n; this loop goes from i = 0 up to i = n− 1.
The difference doesn’t matter to this class.)

Example of Bellman-Ford (Do on whiteboard)
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Correctness of Bellman-Ford Why is Bellman-Ford correct? The key idea is that after the ith outer-
loop iteration, the algorithm has accounted for all paths with ≤ i edges. Then the i+ 1th iteration tries to
extend those paths by one edge, i.e., looks for paths having i + 1 edges that are even shorter. It ends once
it’s considered all paths involving at most n edges; but acyclic paths among n nodes can have at most n− 1
edges, so at that point, we’ve considered all possible acyclic paths.

Theorem 28. For graphs without negative-weight cycles, Bellman-Ford solves the SSSP problem.

Proof. (Sketch, see CLRS for extended version.) The outer loop maintains the following invariant right
before every outer loop iteration i and for every node x:

• Dist[x] is at most the length of the shortest path from start to x out of all such paths having i edges.

It’s true at the very first loop iteration, because the only such path is the singleton path start.
Suppose it’s true at the start of iteration i; then we need to prove it remains true for paths of length

i+1 after relaxing on all the edges. Well, let p1, . . . , pi+2 = x be the shortest path with i+1 edges between
p1 = start and some node x. By the IH, Dist[pi+1] is at most the length of p1, . . . , pi+1, hence when we
relax on the edge pi+1 → pi+2 it will ensure that Dist[pi+2] is at most Dist[pi+1] + E(pi+1, pi+2), i.e., the
length of p1, . . . , pi+2 as desired.

Finally, note that every acyclic path in a graph of n nodes involves at most n−1 edges, so this guarantees
after n iterations of the outer loop that we will have found the shortest path to every node. (Really we could
have stopped after n− 1 iterations, but the difference isn’t asymptotically meaningful.)

Running Time of Bellman-Ford Relaxation in Bellman-Ford takes O(1) time (it just updates the two
tables) and relaxation happens once per edge, once per node, hence in total the time taken is O(nm).

4.2.4 Dynamic Programming

Dynamic programming is a weird name for the following algorithm design process:

1. First, write a recursive solution to your problem that solves a big instance by combining the solutions
to smaller instances (like divide-and-conquer!)

2. Then, memoize the recursion to avoid doing repeated work.

3. Third (usually optional), turn it into a bottom-up, table-filling algorithm.

Fibonacci

Recall the friendly Fibonacci sequence: it has the base cases F0 = F1 = 1 and the recurrence relation
Fi = Fi−1 + Fi−2. A natural way to compute the Fibonacci sequence uses recursion, as shown below:

1 def fib(n):

2 if n <= 1: return 1

3 return fib(n-1) + fib(n-2)

What is the running time of this recursive code? We won’t work through a rigorous proof here, but it’s
not very good at all: if you start drawing a recursion tree, you’ll see there are about

√
2
n
many nodes!

One critical thing to notice in the recursion tree, however, is that many values are recomputed multiple
times! We can avoid this duplicated work by memoizing the computation: add a ‘memory’ dictionary that
remembers what values we’ve already computed and just spits them out if you ever see them again. The
below code does this:

1 memo = {}

2 def fib_memo(n):

3 if n <= 1: return 1

4
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5 if n in memo: return memo[n]

6 memo[n] = fib_memo(n-1) + fib_memo(n-2)

7 return memo[n]

(This sort of transformation can be made automatically to most recursive functions. In the future, we’ll
indicate this just by adding a @memoize annotation before the function.)

Now, what happens when we run this code? The left-most recursion branch will compute fib of n, n− 1,
. . . , 1, and all of those values will be saved in the memo dictionary. Then, all the other recursive calls will be
cut short, because their answers have already been computed and saved, and so they’ll return immediately.
This makes the recursion tree must smaller, and in fact, brings the overall time complexity down to O(n).

Dynamic Programming/Memoized Recursion: Measuring Time

Usually, once you memoize your recursive function, the running time is just dominated by the non-memoized
calls, i.e., the number of unique recursive inputs that can be produced during the recursive calls and the
time taken to compute those the first time they are requested. For example, when computing the Fibonacci
of n, the only possible recursive calls it can make are on the smaller numbers 0, 1, . . . , n, and each of those
calls does only O(1) work other than recursing, hence in total it’s Θ(n) time to compute Fibonacci of n.

Fibonacci, Bottom-Up

It is also common to interpret such memoized, recursive functions in a “bottom-up” fashion, where you fill in
the memo with input–output pairs of increasing size until you get to the number you’re interested in. This
approach for Fibonacci is shown below:

1 def fib_bottomup(n):

2 memo = {}

3 for i = 0, 1, 2, 3, ..., n:

4 if i <= 1:

5 memo[i] = 1

6 else:

7 memo[i] = memo[i-1] + memo[i-2]

8 return memo[n]

(In fact, in the Fibonacci case, you can improve the space usage to O(1) by only keeping around the last
two entries in the memo table!)

Floyd-Warshall

Floyd-Warshall is a dynamic programming algorithm for solving the all-pairs shortest path problem: this is
just like the single-source shortest path, except we want to know the distances between all pairs of nodes,
rather than fixing a single start node.

Pseudocode for a top-down version of Floyd-Warshall is below. It assumes your nodes are numbered
0, 1, . . . , n− 1.

1 @memoize

2 def FW_distance(graph, start, end, k):

3 if k == -1:

4 if start == end: return 0

5 if E(start, end) is empty: return infinity

6 return E(start, end)

7

8 # the best path from start -> end using only nodes 0, 1, ..., k

9 without_k = FW_distance(graph, start, end, k-1)

10 with_k = FW_distance(graph, start, k, k-1) + FW_distance(graph, k, end, k-1)
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11 return min(without_k, with_k)

12

13 def FW_allpairs(graph):

14 return [[FW_distance(graph, start, end, len(graph.nodes)-1) for end in graph.nodes]

15 for start in graph.nodes]

The key is the FW distance method. It gives the length of the shortest path from start to end out of
all such paths that only go through nodes 0, 1, . . . , k. The recursive case says: any path from start to end

that only goes through the nodes 0, 1, . . . , k is either:

• A path from start to end that only goes through the nodes 0, 1, . . . , k − 1, or

• A path from start to k that only goes through the nodes 0, 1, . . . , k− 1, followed by a path from k to
end that only goes through the nodes 0, 1, . . . , k − 1.

This top-down implementation runs in time O(n3) because there are n possibilities for each of the three
arguments, and the function does O(1) work excluding its recursive calls. You can turn this recursive/top-
down algorithm into a bottom-up algorithm, and you can also modify it to store predecessors like we saw in
Bellman-Ford and Dijkstra’s.

Unless we cover it in-class on Friday, we won’t require you to know how Floyd-Warshall works, but you
should know that it solves the all-pairs shortest paths problem in O(n3) time.

About the Name

It’s customary to include the following quote from Richard Bellman, who is credited with inventing/naming
DP, and whic hI’ve copied fromWikipedia where they attribute it to the autobiography Eye of the Hurricane:
An Autobiography :

The 1950s were not good years for mathematical research. We had a very interesting gentleman
in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word ”research”. I’m not using the term lightly; I’m using it precisely. His
face would suffuse, he would turn red, and he would get violent if people used the term research
in his presence. You can imagine how he felt, then, about the term mathematical. The RAND
Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially.
Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was
really doing mathematics inside the RAND Corporation. What title, what name, could I choose?
In the first place I was interested in planning, in decision making, in thinking. But planning, is not
a good word for various reasons. I decided therefore to use the word ”programming”. I wanted to
get across the idea that this was dynamic, this was multistage, this was time-varying. I thought,
let’s kill two birds with one stone. Let’s take a word that has an absolutely precise meaning,
namely dynamic, in the classical physical sense. It also has a very interesting property as an
adjective, and that is it’s impossible to use the word dynamic in a pejorative sense. Try thinking
of some combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good name. It was something not even a Congressman
could object to. So I used it as an umbrella for my activities.

4.2.5 Summary of Today

We saw:

1. Dijkstra’s algorithm for SSSP, which takes time O((n + m) log n) for the version we saw, but might
break if there are negative-weight edges.

2. The Bellman-Ford algorithm for SSSP, which takes time O(nm) and works as long as there aren’t
negative-weight cycles.
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3. The idea of dynamic programming, where you write down the results of a recursive function so that
you don’t have to do repeated work.

4. The Floyd-Warshall algorithm for all-pairs shortest paths, which takes time O(n3) rather than the
näıve O(n2m) it might take Bellman-Ford.

4.2.6 Post-Lecture Ed Notes

Also, one thing I wanted to reiterate is that for the graphs section, since it’s so tightly packed into these
two weeks, we won’t have time to go through the algorithms and correctness proofs in detail in lecture. The
hope is that, since we’ve spent most of this quarter practicing that skill, you can start to practice doing
those steps on your own. I definitely suggest reading the proofs in the lecture notes posted to Canvas as well
as the textbook chapters. For graphs, Erickson really shines.

In particular, I think Erickson, SW, and CLRS all explain where the term ”relax” comes from, and you
may find that reading about that will help you internalize how the shortest-path algorithms we saw today
work.

We saw a few different ways of computing fibonacci today, but if your computer can do real number
operations (addition, power, multiplication, etc.) in O(1) time then you can actually compute Fib(n) in O(1)
time! See https://en.wikipedia.org/wiki/Fibonacci_sequence#Relation_to_the_golden_ratio and
the C code above, but note that approach is out-of-scope for this class.

https://en.wikipedia.org/wiki/Fibonacci_sequence#Relation_to_the_golden_ratio
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Name: Stanford ID Number:

4.2.7 Lecture 7/31 EC Question

We said Dijkstra’s algorithm doesn’t necessarily work in the presence of negative-weight edges. Try running
Dijkstra’s algorithm on the following graph, which has a negative-weight edge. Start the algorithm at node A.
What should the shortest path to D be, and what did Dijkstra’s algorithm report? What went wrong? (The
last part is a somewhat open-ended question.)

A

B

C

D

5

3

1

-4

-1
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4.3 Lecture 8/2: Minimum Spanning Trees

4.3.1 Terminology for Today

Today we’ll be assuming undirected graphs.

• An undirected edge a ↔ b refers to both the edges a → b and b → a as one. Today we’ll always be
referring to undirected edges.

• A cut is a subset S ⊆ V of the vertices in a graph.

• An edge u ↔ v crosses the cut S if exactly one of u, v is in S.

• A light crossing edge of cut S is an edge u ↔ v that crosses S and has minimal weight among all such
edges.

• A spanning tree of an undirected graph is a subset T of undirected edges in the graph such that (1)
every node is connected to every other node in the graph, and (2) there are exactly |V |−1 (undirected)
edges in T .

• The weight of a spanning tree T is the sum of all the edge weights in T (only count the weight on each
undirected edge once).

(Do some TPS on these definitions — we should have time today.)

4.3.2 The Minimum Spanning Tree Problem

Suppose you’re building a new university, and you want to connect all of the buildings with network cables so
computers can communicate between buildings. You can model this scenario as an undirected graph, where
nodes represent buildings and there is an edge a ↔w b if placing a cable between a and b costs w dollars.

What is the cheapest set of wires you can lay that connects all the computers together?

The graph problem that captures this question is called the minimum spanning tree problem:

Definition 22. Given a connected, undirected graph, the minimum spanning tree problem is to find a
spanning tree T of the graph that has minimum weight.

(Why require it to be a tree? Basically boils down to laying as few wires as possible. If the edges are
positive, the tree requirement is implied by just saying all nodes are reachable.)

In general, a single graph may have multiple MSTs. For example, if the graph is unweighted, then all
spanning trees are minimal.

4.3.3 The Greedy Algorithm Idea

All the algorithms we see today are going to be greedy algorithms. In general, we’ll think of greedy algorithms
like this:

1. Start with a simple initial solution (e.g., an empty set of edges)

2. Consider a set of candidate extensions to that solution (e.g., what edge to add to your set of edges),
and pick the best one out of those candidates (e.g., the one that adds the least to the total weight).

3. Repeat.

In some cases, as we’ll see, we can prove that such a greedy algorithm solves the problem. In general,
whether or not the greedy algorithm correctly solves the problem will depend on the set of candidate
extended solutions you consider, and how you measure which one is the best.
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4.3.4 The Cut Lemma

Both of the algorithms we’ll see today work by making a cut in the graph, and then finding a light crossing
edge of the cut. They extend the partial solution by adding in that light crossing edge. The below lemma
tells us that this process is sound: as long as we keep doing this, we will always be able to extend our partial
solution into a ‘real’ MST.

Lemma 4. Suppose A is a subset of the edges in some MST, S is a cut that no edge in A crosses, and
u ↔ v is a light crossing edge of S. Then, A ∪ {u ↔ v} is also a subset of the edges in some MST.

Proof. By the assumptions on A, there exists an MST T such that A ⊆ T . Notably, there is some walk
p1 ↔ p2 ↔ p3 ↔ · · · ↔ pn−1 ↔ pn from p1 = u to pn = v already in T . Because u ↔ v crosses the cut
S, one of those edges must cross S as well. Let i be chosen such that pi ↔ pi+1 is the first such edge that
crosses S. Notice then, because u ↔ v is a light crossing edge of S, that the weight of u ↔ v is at most the
weight of pi ↔ pi+1. Furthermore, because A did not cross S, (pi ↔ pi+1) ̸∈ A.

Now, consider the set of edges T ′ = (T \ {pi ↔ pi+1}) ∪ {u ↔ v}. It still connects all nodes: any walk
that would have used the edge pi ↔ pi+1 should replace that edge with pi ↔ pi−1 ↔ · · · ↔ u ↔ v ↔ pn−1 ↔
· · · ↔ pi+1. And it has smaller (or equal) weight as T , since pi ↔ pi+1 had greater than or equal to weight
compared to the edge u ↔ v we replaced it with. So T ′ is an MST that contains A∪{u ↔ v}, as desired.

4.3.5 Prim’s Algorithm

Prim’s algorithm repeatedly grows the set of nodes reachable. On each iteration, it adds the edge of minimum
weight that connects any node already reached with a node not yet reached. The cut property guarantees
this is a safe choice: take the cut to be the reached nodes.

1 def prim(graph):

2 start_node = (pick any node in graph)

3

4 reached = {start_node}

5 outgoing_edges = graph.Out(start_node)

6

7 MST_edges = set()

8

9 while len(reached) != graph.n_nodes:

10 edge = outgoing_edges.pop_lightest()

11 if edge.dst in reached: continue

12

13 MST_edges.insert(edge)

14 reached.insert(edge.dst)

15 for out_edge in graph.Out(edge.dst):

16 outgoing_edges.insert(out_edge)

17

18 return MST_edges

Correctness of Prim’s

Theorem 29. Prim’s algorithm correctly finds an MST given any unweighted, connected graph.

Proof. (Sketch) Main loop maintains the invariant that MST edges is always a subset of some MST (follows
by the cut lemma with the cut reached). Only terminates once MST edges includes all the nodes, hence is
itself an MST.

Example of Prim’s

(Do on board)
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Running Time of Prim’s

We can use a heap to store the set of edges. The running time is dominated by line 16, which runs exactly
once for each of the m edges in the graph and does O(logm) work each time it’s executed, hence in total
the running time is O(m logm) = O(m log n2) = O(m log n), because m = O(n2).

(Out-of-scope: With a Fibonacci heap, you can apparently take the running time of Prim’s down to
O(m + n log n). Even with a normal heap, you can slightly improve the constant factors on the O(m log n)
by checking whenever you insert an edge to the heap whether an edge to that node already exists; if so, either
replace it or do nothing depending on the weight of that existing edge.)

4.3.6 Kruskal’s Algorithm

In Kruskal’s algorithm, we repeatedly grow and connect islands together. On each iteration, it adds the edge
of minimum weight that connects two disjoint islands. We’ll use union-find to store the islands. Correctness
of Kruskal’s algorithm again follows from the cut property; take the cut S to be the set of all nodes in the
same island as the edge’s source.

1 def kruskal(graph):

2 MST_edges = set()

3 for edge in sort_by_weight(graph.edges):

4 if not same_set(edge.src, edge.dst):

5 MST_edges.insert(edge)

6 union(edge.src, edge.dst)

7 return MST_edges

Correctness of Kruskal’s

Theorem 30. Kruskal’s algorithm correctly finds an MST given any unweighted, connected graph.

Proof. (Sketch) Same argument, except take the cut to be the island of nodes in the same set as the source
node of the newly added edge.

Example of Kruskal’s

(Do on board)

Running Time of Kruskal’s

It takes O(m logm) = O(m log n) time to sort the edges, followed by O(mα(m)) time to process all of them.
This is dominated by the former, i.e., the time to run Kruskal’s is O(m log n).

But, if you already have the edges in sorted order for some reason, then Kruskal’s can be run in only
O(mα(m)) time, which is just about linear!

4.3.7 Greedy Algorithms More Generally

Both Prim’s and Kruskal’s were examples of the greedy algorithm design pattern: make your partial solution
a little better at each step.

In general, when designing an optimal greedy algorithm, you need to:

1. Design a heuristic that tells you what is the best choice to pick at each step,

2. Prove that, if there is an optimal solution extending partial solution A, and the heuristic says to extend
to partial solution A′, then there’s still an optimal solution extending A′.

In Prim’s algorithm, the heuristic involved picking the lightest edge connecting a reached node with an
unreached node. In the toposort, we greedily added any class that we had satisfied all the prereqs for (this
worked because taking a class never prevents us from taking another class).
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Hints for Designing Heuristics

A good thing to ask yourself when designing heuristics is: what is the “least bad” thing I can pick? (E.g.,
the lightest weight edge).

Another Greedy Algorithm Example: Activity Selection

Let’s look at a classic example of greedy algorithms: activity selection. Suppose you have n activities:
activity ai starts at time si and finishes at time fi. You want to sign up for as many activities as possible,
but cannot sign up for overlapping activities.

We’re going to try using the greedy strategy. What heuristic should we pick? What we want to avoid is
picking an activity that will restrict what other activities we can do in the future. So let’s try picking the
activity that finishes first : this will give us as much remaining time in the day to do other activities!

Lemma 5. Let A be a set of nonconflicting activities that can be extended into a set B ⊋ A of nonconflicting
activities with maximal size. Let ai be the activity that does not conflict with anything of A and finishes
earliest. Then, there is another set B′ ⊃ A ∪ {i} of nonconflicting activities that extends A ∪ {ai} and has
identical (maximal) size to B.

Proof. Let aj ∈ B \ A be the earliest-finishing activity in B but not A. By assumption in the problem, ai
finishes at least as early as aj , i.e., fi ≤ fj .

Let the new set be B′ := (B \ {aj}) ∪ {ai}. Consider any activity ak ∈ B′ \ A; we need to show it
doesn’t conflict with aj . But we assumed aj was the earliest-finishing activity in B \ A, so ak must start
after aj finishes, i.e., fj ≤ sk. But we already saw that fi ≤ fj , hence fi ≤ fj ≤ sk and so ai and ak do
not conflict. Hence no two activities in B′ conflict, and since B′ has the same size as B we’ve completed the
argument.

This leads to the following natural greedy algorithm:

1 def select_activities(activities):

2 selected, unselected = set(), sort_by_finish(activities)

3 while unselected:

4 choice = unselected.pop_earliest_finish()

5 if choice conflicts with selected:

6 continue

7 selected.add(choice)

8 return selected

Note the finish times of selected grow monotonically, so line 5 can be implemented by checking only
whether choice conflicts with the most recently selected activity, i.e., in O(1) time. So the overall time is
O(n log n) time to sort plus O(n) time to select activities, for a total time of O(n log n).

4.3.8 Post-Lecture Ed Notes

Caveats about code from previous posts still apply. Code for these algorithms is particularly interesting
because they combine a lot of algorithms we’ve seen previously (Prim’s uses heaps, Kruskal’s uses both
sorting and union-find, activity selection uses sorting!).

There was a question about doing MST on directed graphs; per some internet searching, it seems like
the analogue of a spanning tree in that setting is a ”spanning arborescence” and Edmond’s algorithm is sug-
gested for finding a minimum-weight spanning arborescence: https://en.wikipedia.org/wiki/Edmonds%
27_algorithm

https://en.wikipedia.org/wiki/Edmonds%27_algorithm
https://en.wikipedia.org/wiki/Edmonds%27_algorithm
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4.3.9 Lecture 8/2 EC Question

Run Prim’s algorithm on the following graph, using C as the start node.
What is the weight of the resulting MST?

A

B

C

D

5

3

1

-4

-1
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4.4 Week 6 Problem Sheet

Read This First: As I hopefully remembered to mention in class, the next two weeks will be heavily focused
on algorithm design rather than algorithm analysis. The main thing you need to do to learn algorithm design
is to practice, and practice a lot. This has two benefits. With an extreme amount of practice, you’ll be
able to try out and reject failing approaches in your head much faster, which lets you do more guess-and-
check/trial-and-error than you otherwise would have been able to do. Practice also helps you get better at
identifying almost-subconscious patterns that hint at when to use which technique and how to adapt that
technique to the application domain.

My strong suggestion is to ignore the problems below and instead go to https://leetcode.com/

problemset/ and spend as much time as you have solving problems there. You should start with the ‘easy’
problems and then increase difficulty if you find them to be actually easy. You can filter by topic. When
you design an algorithm to solve one of those problems, you should also analyze its running time.

In case you already feel comfortable with algorithm design, or have finished all of Leetcode, I’ve
added below some problems that introduce you to algorithms and algorithm techniques that have been useful
to my own work/research. They are mostly tilted towards compilers and programming languages work. I’ve
tried to make them sort of approachable to folks without background in that area, but they probably still
require a fair bit of application domain knowledge to follow. So do not make the mistake of spending
hours trying to understand what those problems are asking, when you could be spending those same hours
grinding leetcode; the problems below are not magically more important or pedagogically useful than the
problems on leetcode.

A note on OHs: The CAs this week have also been instructed to ignore this homework assignment
and instead focus on Leetcode-style problems in OHs. So if you have an interest in any of these problems,
you’re probably best reaching out to me individually. But overall you should consider these problems
out-of-scope for this class, similar to the post-lecture notes I usually give on Ed.

4.4.1 Lecture 7/29: Welcome to Graphs

Problem 51: Recall from 103 the notion of regular languages.

1. Given two regular expressions (or NFAs, or DFAs), determine if they accept the same set of
words or not. Your algorithm should take time proportional to the number of reachable states
in the product DFA for the two regular expressions plus the size of the NFAs for the two regular
expressions.

2. Describe a class of inputs where BFS would perform better on this task and another class of inputs
where DFS would perform better.

3. Extend your solution to part (1) to support infinite state machines, e.g., Turing machines. If
you’d like, you can assume the infinite state machine is encoded by a state transition matrix that
you can query one row of at a time (i.e., you can ask for each state and input what the next state
would be).

4. Prove (perhaps with reference to a theorem you learned in 103) that it is impossible for any
algorithm to ‘truly’ solve the problem described in part (3).

5. Finally, modify your answer to part (3), if needed, in order to prove that it is a recognizer :
when given any two nonequivalent programs, your procedure will eventually halt and report them
nonequivalent. Does the same theorem hold if you used a different one of BFS/DFS?

(If you like this problem, you might find the concept of ‘model checking’ interesting.)

Problem 52: Consider a program written in a simple programming language with the following in-
structions: set x = 0, copy x = y, increment x++, if x = 0 then skip next line, goto line n.
The program halts once it tries to execute past the end of the instruction list. Here’s an example

https://leetcode.com/problemset/
https://leetcode.com/problemset/
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program:

[line 0] set y = 0

[line 1] set x = 0

[line 2] if x = 0 then skip next line

[line 3] increment x++

[line 4] goto line 6

[line 5] increment y++

[line 6] increment x++

1. Line 5 is dead code: there’s no way to reach it. Removing dead code helps speed up compilation
and save space on small embedded devices. Devise an algorithm for identifying dead code; nodes
should be lines in the program, and edges should represent syntactic reachability (i.e., line 2 has
an edge to both line 3 and line 4).

2. Line 3 is also dead code, but this requires a slightly more semantic analysis to determine this.
Extend your algorithm from part (1) so that it can detect that line 3 is dead. Nodes should now
be a pair (l, s) where l is a line number and s is a set of variables that are definitely zero.

(If you find these ideas interesting, you might want to look into static analysis and abstract interpreta-
tion.)

Problem 53: Consider a graph G, a source node s with no incoming edges, and a target node t with
no outgoing edges. We say a node x dominates t if every path from s to t goes through x. Given an
acyclic graph G with n nodes and m edges, along with two nodes s, t, describe how to identify the set
of all dominators in time O(n+m).
(Variants of the above problem are used to perform conflict analysis in virtually all competitive modern
SAT solvers. If you would like to learn more about it, you might consider reading the paper “GRASP —
A New Search Algorithm for Satisfiability” or searching for “CDCL UIP.” They also appear frequently
in compiler optimizations, you may want to search for “dataflow dominators.”)

Hint: Hint(s) are available for this problem on Canvas.

Problem 54: In programming languages like C the programmer is expected to manually call the
Free function to release heap memory objects that they know they will never need to refer to again.
In higher-level languages, it is more common to use automatic memory management techniques that
automatically free unused memory for you. The most popular of these is tracing garbage collection:
interpret the heap as a graph, where nodes correspond to objects in memory and edges correspond to
pointers between those objects. Suppose you have paused a program and have access to the heap graph
as described above. Explain how to identify objects in memory that can be safely freed.

(There’s a lot of work on garbage collection algorithms; if you’re interested, you may want to start
by skimming the Garbage Collection Handbook or the relevant sections in TAOCP.)

Problem 55: Leetcode topics: Breadth-First Search, Depth-First Search, Topological Sort. https:

//leetcode.com/problemset/ For each problem, provide: a description of the graph (nodes and edges),
an algorithm solving it, and an asymptotic analysis of the running time. Also, justify any design choices
you made (BFS vs. DFS, etc.).

4.4.2 Lecture 7/31: Shortest Paths and Dynamic Programming

https://leetcode.com/problemset/
https://leetcode.com/problemset/
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Problem 56: Given a context-free grammar and a string s, devise a dynamic programming algorithm
to parse s according to the grammar. If the string has length n and the grammar has constant size,
your algorithm should parse the string in time O(n3). (The algorithm you will likely rediscover is called
CYK parsing. If you’re interested in learning more about this, you may also wish to search up Earley
parsing, PEG parsing, and LR parsing.)

Hint: Hint(s) are available for this problem on Canvas.

Problem 57: Do the same as Problem 5 except for Leetcode topics: dynamic programming and shortest
path. You may also find good problems in CLRS chapter 14.

4.4.3 Lecture 8/2: Prim and Kruskal

Problem 58: (This problem works through the Euler Tour Technique for storing spanning trees. It’s
not too related to today’s lecture. The paper “Logarithmic Lower Bounds in the Cell-Probe Model” is
good follow-on reading to skim; the author tragically passed away about a decade ago but did some of the
most exciting modern work in lower bounds I’ve seen.) In previous homeworks, we saw how both Splay
trees and 2–3 trees can be used to implement a list data structure with O(log n) insertion, deletion,
random access, split, and join. Suppose you have a forest of trees stored in such a list, where the tree
is stored in the list in an order described by the following pseudocode:

1 def visit(root):

2 if root is empty: return []

3 return [root] + visit(root.left) + visit(root.right) + [root]

Notably, every node in the forest appears twice in some list. Explain how to implement the following
operations by modifying the lists:

1. (Cut) Given a node in one of the trees, cut it and its subtree out of its parent, i.e., delete the
incoming edge to that node. Your algorithm should require O(1) many list operations.

2. (Link) Given a root node in one of the trees and a node in some other tree, describe how to link
them by inserting an edge between the two nodes. Your algorithm should require O(1) many list
operations.

3. (Find-Root) Given two nodes in the forest, determine if they are part of the same tree or not.
Your algorithm should require O(1) many list operations.

In all cases, you can assume that a ‘node’ is given to you as a pointer to the first and last instance
of that node in the relevant list. Finally, show how to maintain a maximal spanning forest for an
unweighted, undirected graph if the graph grows over time and is described by a sequence of edge
insertions. Processing each edge insertion should take O(log n) time.

Problem 59: Do the same as Problems 5/7 except for the topic: minimum spanning tree.
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4.5 Lecture 8/5: Max Flow/Min Cut

Most of the content in this lecture/these notes is adapted pretty directly from Erickson, Chapter 10, used
under a Creative Commons Attribution License.

There’s a classic story (you can read in Erickson) where the USSR and the US were both looking at maps
of the USSR rail system. The USSR wanted to figure out how best to utilize the railways, i.e., what the
maximum amount of goods they could get from a starting point s to a target point t, without overloading the
capacity of any track. Meanwhile, the US wanted (roughly stated) to find a set of low-capacity (presumably
poorly guarded) rail links that they could disrupt that would totally prevent the USSR from sending anything
from s to t. We’ll study both of these problems today: the former corresponds to a maximum flow problem,
and the latter corresponds to a minimum cut problem.

4.5.1 Why learn Max Flow/Min Cut?

See many features of LP solving (especially duality) for the first time. Problem with application to many
other domains.

4.5.2 Special Assumptions for Today’s Lecture

We’ll assume we’re given a graph of the rail network with the following features:

• The graph is directed and has a specified source node s and target node t.

• E : V × V → R≥0, i.e., no edges are empty (⊥) and no edges are negative.

• We’ll represent missing edges (i.e., if there’s track between two cities a, b) by E(a → b) = 0, not
E(a → b) = ⊥ as we were doing earlier.

• No antiparallel edges: for any a, b, if E(a → b) > 0, then E(b → a) = 0. (This constraint can be done
away with, but the algorithms are easier to understand if we make this assumption.)

• For clarity, we’ll write E(a → b) sometimes instead of E(a, b).

• We will call the edge weights the capacity of the edge, since they represent how many units of supplies
we could hypothetically push over that railroad.

4.5.3 Graph Flows and the Max Flow Problem

Terminology. In the below, we’ll assume a directed graph G, a specified source node s, and a specified target
node t.

• A flow function f : V × V → R≥0 assigns each edge a → b in the graph some flow f(a → b). For any
node a, define the net flow δ(a) to be the flow out of the node minus the total flow into the node, i.e.,
δ(a) :=

∑
v f(a → v)−

∑
v f(v → a). Finally, we also require that every flow function satisfy:

1. The flow along each edge must be at most the capacity of that edge: f(a → b) ≤ E(a → b).

2. For every node a except for s and t, the total flow out of the node is identical to the total flow
into the node: δ(a) = 0. (Intuitively, this means no station between s and t can hold on to any
goods; they must pass along everything they get.)

• The weight of a flow is the net flow leaving s, i.e., δ(s). Note that this is identical to the net flow
reaching t, i.e., δ(s) = −δ(t).

• We say an edge a → b is saturated by the flow if f(a → b) = E(a → b).

• We say an edge a → b is avoided by the flow if f(a → b) = 0.

Problem 2. The max-flow problem is to devise a flow having maximum weight.
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4.5.4 Finding Good Flows: The Ford-Fulkerson Method

The Ford-Fulkerson algorithm for finding maximum flows works as follows:

1 def fordfulkerson(graph):

2 flow = {edge: 0}

3 while True:

4 A = find augmentation

5 if no augmentation: return flow

6 apply augmentation A to graph

It has a similar flavor to many of the greedy algorithms we’ve seen: start with a ‘simple’ flow that doesn’t
try to send anything. Then, at each step, find some way to improve the flow (we call this an augmentation;
see below). Keep improving the flow until you can’t find any more improvements.

What are augmentations?

An augmentation is a sequence of modifications to a flow, with the following properties:

• For any node x other than s, t: if the augmentation increases the flow entering x, it must then either
increase the flow exiting x or decrease some other flow entering x to compensate.

• (Similar symmetric conditions for increasing the flow exiting x, decreasing flow entering x, etc.)

To get a sense for augmentations, consider the following possible rail map, taken from Kevin Wayne’s lec-
ture slides (https://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/maxflow.4up.
pdf):

s x2 x3

x4 x5

t
10 13 10

6 4 4
4

Now, the Ford-Fulkerson method tells us to start with a basic zero flow; we’ll draw the flow on each edge
before a slash:

s x2 x3

x4 x5

t
0/10 0/13 0/10

0/6 0/4 0/4
0/4

Our goal is to increase the flow out of s. So we could make the following augmentation:

1. Increase the flow from s → x2 by 10.

2. Now x2 has too much incoming flow, so we need to compensate. We can do so by increasing the
outgoing flow from x2 → x3 by 10.

3. Now x3 has too much incoming flow, so we need to compensate. We can do so by increasing the
outgoing flow from x3 → t by 10.

Since t and s don’t need to satisfy the δ(a) = 0 condition, we can stop here having successfully increased
the flow from s to t:

https://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/maxflow.4up.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/maxflow.4up.pdf
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s x2 x3

x4 x5

t
10/10 10/13 10/10

0/6 0/4 0/4
0/4

But increasing the flow isn’t always as easy as increasing all the edges along some path. For example,
consider the following nonobvious augmentation:

1. Increase the flow from s → x4 by 4

2. Now x4 has too much incoming flow, so increase the flow from x4 → x3 by 4 to compensate.

3. Now x3 has too much incoming flow. We can’t push any more flow out of x3, but we can decrease the
amount of flow coming into x3 from other sources, i.e., we can decrease the flow from x2 → x3 by 4.

4. Now x2 has too much incoming flow, but we can remedy this by increasing the flow from x2 → x5 by
4.

5. Finally, x5 now has too much incoming flow, but we can fix this by sending it to t by increasing the
flow on x5 → t by 4.

Although this required the nonobvious move of decreasing the flow from x2 to x3, it results in a better
flow, of weight 14:

s x2 x3

x4 x5

t
10/10 6/13 10/10

4/6 4/4 4/4
4/4

Finding Augmentations: The Residual Graph

So far, it seems like we’re just finding these augmentations by trial-and-error. Is there a more principled
way? The answer is yes! The secret is to turn our graph into a related graph called the residual graph.

The key thing to remember is the following: an edge xi → xj in the residual graph means “if xi has too
much incoming flow, it can get rid of it by either increasing how much flow it sends to xj or decreasing how
much flow xj sends to it.”

Formally, given a graph (V,E) and a flow f , we define the residual graph (V,E′) on the same vertices
like so:

1. If E(a → b) > 0, then E′(a → b) = E(a → b) − f(a → b). (Intuitively, this says: if node a has too
many incoming supplies, it can get rid of at most E(a → b)− f(a → b) of them by sending them to b
along the rail line a → b.)

2. If E(a → b) = 0, then E′(a → b) = f(b → a). (Intuitively, this says: if a has too many incoming
supplies, it can get rid of at most f(b → a) of them by asking b to send fewer supplies along the rail
line b → a.)

Let’s see how we could have used the residual graph to find the last augmentation we just saw. We
started with this flow:
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s x2 x3

x4 x5

t
10/10 10/13 10/10

0/6 0/4 0/4
0/4

And the corresponding residual graph (excluding zero edges) looks like:

s x2 x3

x4 x5

t
10 3

10

10

6 4 4
4

It’s useful to pause here and restate exactly what some of these edges represent; importantly, edges that go
the same direction as those in the original graph have a slightly different meaning from those that go in the
opposite direction:

1. The edge x2 →3 x3 in the residual graph means “if x2 has too much incoming supplies, you can
compensate by sending at most 3 units more to x3.”

2. On the other hand, the edge x3 →10 x2 in the residual graph means “if x3 has too much incoming
supplies, you can compensate by asking x2 to send it at most 10 fewer units of supplies.”

The key idea is that paths from s to t in the residual graph correspond to augmentations
in the original graph. For example, the existence of the path s → x4 → x3 → x2 → x5 → t means: if s
has some extra supplies to send, it can do so by first sending it to x4. Then x4 has too many supplies, but
it can get rid of them by sending it to x3. Now x3 has too many supplies, but it can solve this by asking x2

to send fewer supplies. Now x2 has too many supplies, but it can solve this by sending more to x5. Finally,
x5 has too many supplies, but it can solve this by sending them to the destination t. This is exactly the
augmentation we saw before!

In fact, because of how we defined the residual graph, any path from s to t in the residual graph
corresponds directly to such an augmentation!

(One small point we haven’t discussed yet is exactly how much to augment each edge in the flow by: if
you take it to be the minimum edge weight in the path, you’ll find everything works!)

(If you are unconvinced by the above exposition of the connection between augmentations and paths in
the residual graph, Erickson contains a more algebraic proof.)

Ford-Fulkerson in More Detail

We’ve now seen that constructing the residual graph gives us an easy way to find augmentations. If we fill
this in to the Ford-Fulkerson pseudocode, we get a slightly more detailed procedure:

1 def fordfulkerson(graph):

2 flow = {edge: 0}

3 while True:

4 R = build residual graph(graph, flow)

5 path = find path from s to t in residual graph

6 if no such path: return flow

7 apply augmentation corresponding to path
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Remaining Question: Is It Optimal??

Ford-Fulkerson gives us a way to make better-and-better flows, stopping once there is no path from s to t in
the residual graph. But how do we know that the flow it finds is actually the best? Maybe there are some
more clever ways to modify the flow that aren’t represented in the residual graph? In other words, we have
yet to show that Ford-Fulkerson actually finds the maximum flow. It turns out it does find the maximum
flow, however, and this is what we’ll spend the rest of the day proving! Surprisingly, the proof will take a
big detour into the min-cut problem.

Before We Move On: Reachable Nodes in the Residual Graph

Before we move on, while we’re thinking about residual graphs, let’s note one interesting fact about the
residual graph once Ford-Fulkerson stops:

Lemma 6. Let C be the set of all nodes reachable from s in the residual graph right before Ford-Fulkerson
stops. Then, s ∈ C, t ̸∈ C, any edge exiting C is saturated, and any edge entering C is avoided. (Entering
means an edge from a node in Cc to a node C; exiting means the opposite.)

Before proving it, let’s see how this lemma works in the running example. After applying the second
augmentation, we get this flow:

s x2 x3

x4 x5

t
10/10 6/13 10/10

4/6 4/4 4/4
4/4

which corresponds to the following residual graph:

s x2 x3

x4 x5

t
10 7

6

10

2

4

44
4

The nodes reachable from s in the residual graph are C = {s, x4}, and indeed we see the following in the
original (non-residual) graph:

1. Both of the exiting edges (s → x2, x4 → x3) are saturated, and

2. There are no entering edges, hence they’re vacuously all avoided.

We can now prove the lemma:

Proof. Suppose for sake of contradiction there were an exiting edge a → b that wasn’t saturated, i.e., a ∈ C
and b ̸∈ C but f(a → b) < E(a → b). In that case, by definition of the residual graph, there would be an
edge a → b in the residual graph with weight E(a → b)− f(a → b) > 0. But then, because a ∈ C and hence
a is reachable from s, b would also be reachable from s in the residual graph. But then b ∈ C, contradicting
the assumption b ̸∈ C.

Suppose for sake of contradiction there were an entering edge a → b that wasn’t avoided, i.e., a ̸∈ C and
b ∈ C but f(a → b) > 0. In that case, by definition of the residual graph, there would be an edge b → a in
the residual graph with weight f(a → b) > 0. But then, because b ∈ C in the residual graph, we would also
have a ∈ C, a contradiction.
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4.5.5 Graph Cuts

• A cut is a subset C ⊆ V of the vertices in a graph.

• An s–t cut is a cut C where s ∈ C and t ̸∈ C.

• The crossing capacity of an s–t cut C is
∑

v∈C

∑
u ̸∈C E(v, u), i.e., the capacity of all the rail edges

leaving C.

Notice we already saw an s–t cut, specifically the set C of nodes reachable from s in the residual graph
upon stopping Ford-Fulkerson. In general, an interesting problem given any graph is the min-cut problem:

Problem 3. The min-cut problem is to find an s–t cut C of minimal crossing capacity.

4.5.6 Max-Flow, Min-Cut Weak Duality Lemma

The following lemma is called the weak duality lemma for max-flow/min-cut. It says that if you have any s–t
cut and any flow, then the absolute best possible thing the flow could do is fully saturate the edges leaving
the cut and avoid all the edges going back into the cut. In particular, this means that even the value of the
very best flow is at most the capacity of the very best s–t cut.

Lemma 7. Consider any flow f and any s–t cut C. The weight of f is at most the crossing capacity of
C. In fact, the weight of f is equal to the crossing capacity of C exactly when all the edges exiting C are
saturated, and all the edges entering C are avoided.

Proof. (Adapted directly from Erickson.) The weight of f is δ(s), which we know is

δ(s) =
∑
v∈C

δ(v)

=
∑
v∈C

(∑
w

f(v → w)−
∑
w

f(w → v)

)
=
∑
v∈C

∑
w

f(v → w)−
∑
v∈C

∑
w

f(w → v)

=
∑
v∈C

∑
w∈C

f(v → w) +
∑
w ̸∈C

f(v → w)

−
∑
v∈C

∑
w∈C

f(w → v) +
∑
w ̸∈C

f(w → v)


=
∑
v∈C

∑
w∈C

f(v → w) +
∑
v∈C

∑
w ̸∈C

f(v → w)−
∑
v∈C

∑
w∈C

f(w → v) +
∑
v∈C

∑
w ̸∈C

f(w → v)

=
∑
v∈C

∑
w ̸∈C

f(v → w)−
∑
v∈C

∑
w ̸∈C

f(w → v)

≤
∑
v∈C

∑
w ̸∈C

f(v → w)

≤
∑
v∈C

∑
w ̸∈C

E(v → w),

which is indeed the weight of the cut.
The first equality follows because, by the definition of a flow, δ(v) = 0 for every node v in the cut C

except for s, so the sum just adds in a bunch of other zero terms. The second equality expands the definition
of δ(v) and the third regroups the terms in the sum. The fourth equality separates out the nodes according
to whether or not they are in C, the fifth again regroups terms, and the sixth cancels out two identical sums
(both just count the flow among edges internal to C).

In words, what we’ve done is add up all the incoming/outgoing edges involving nodes in C. Edges totally
internal to C cancel out, and all that’s left is the edges flowing in from Cc and out from C to Cc.

Also notice that the first ≤ is an equality only when the subtracted-off term is zero, i.e., only when there
is no flow along the edges into C. Similarly, the second ≤ is an equality only when all the edges out of C
are saturated.



4.5. LECTURE 8/5: MAX FLOW/MIN CUT 141

You can also think of this in a real-world situation: you (meaning, all of C) are sending supplies out to
someone else (Cc). You start with n supplies, and end up at the end of the day with zero supplies. At some
point, people mistakenly send you a total of m supplies back, but you promptly send those out again to end
up with zero supplies at the end of the day. In sum, then, you have sent a net of n supplies out, including l
directly out and m that you double counted because you got them sent back to you, i.e., n = l−m. This is
exactly where the final equality in the above algebra comes from.

4.5.7 Max Flow, Min Cut Strong Duality Theorem

Theorem 31. When Ford-Fulkerson exits, there is a cut with identical crossing capacity to the weight of the
flow and hence the flow is maximal and the cut is minimal.

Proof. We showed in Lemma 6 that when Ford-Fulkerson exits there exists a cut where all the exiting edges
are saturated and entering edges are avoided, hence, by Lemma 7 the flow has the same weight as the cut
has crossing capacity.

But also by Lemma 7, we know no other flow can have higher weight (because its weight is at most the
capacity of the cut), and similarly no other cut can have lower capacity. So these two are indeed optimal.

4.5.8 Running Time?

How long does Ford-Fulkerson take to run? It depends on which path through the residual graph that you
choose. You’ll evaluate some different options on HW7 (if you feel like doing so); for now, it’s sufficient
to know that a good choice (often referred to as the Edmonds-Karp algorithm) is to pick the path in the
residual graph that uses the fewest number of edges; for integer-valued weights, this leads to a polynomial-
time max-flow algorithm.

4.5.9 Post-Lecture Ed Notes

Note max-flow is sort of a ”baby version” of some broader problem called linear programming. The duality
between max-flow and min-cut is (essentially) an instance of this broader duality between a linear program-
ming maximization problem and its dual minimization problem. I’ll add a problem working through this to
the homework.

Also note that the restriction that no antiparallel edges exist is relatively easy to do away with; in the
above code, I’ve handled this by allowing multiple parallel edges in the residual graph and kept track of the
meaning of each of those edges to disambiguate. Alternatively, Erickson and CLRS have transformations
that allow you to reduce one version of the problem to the other.
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Name: Stanford ID Number:

4.5.10 Lecture 8/5 EC Question

(This is a somewhat open-ended question.) At the start of today, we assumed the graph had no antiparallel
edges, i.e., if E(a → b) ̸= 0 then E(b → a) = 0. What part of our lecture relied on this fact, i.e., which step
would be complicated by the existence of a, b with E(a → b) > 0 and E(b → a) > 0?
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4.6 Lecture 8/7: More Classic Algorithms

(This lecture is adapted closely from problems and chapters in CLRS.)

4.6.1 DP: Rod Cutting

Suppose you have a large metal rod of length n, and a machine that can cut any rod into smaller pieces
(assume all lengths are whole numbers, and you can only cut into whole-number-length pieces). You check
on Craigslist, and a lot of people are offering money for rods of different sizes. Let Ps be the market price
people will pay you per rod for a rod of length s.

Problem 4. Assume you are going to cut your rod into pieces and sell all the pieces at market price. What
sizes of pieces should you cut to maximize your earnings?

Let’s look at a tiny example: you have a rod of length 2, and the market prices are P1 = 2 and P2 = 3
dollars. You have two options:

1. Cut into two rods of length 1 each, for a total of 2P1 = 4 dollars, or

2. Leave it as one rod of length 2, for a total of P2 = 3 dollars.

In this scenario, cutting the rod into two pieces of length 1 is the optimal solution.

A Recursive Solution

Think on your own!
Let’s think recursively about this. There are n possible sizes s for the first rod we cut, and if we commit

to the first cut having length s, then the best thing we can do is optimally cut and sell the remaining n− s
length of rod.

This leads to the recursive algorithm (note we’re only showing how to compute the price of the optimal
cut, not how to compute the cut itself, but you can modify the algorithm to do so):

1 def best_cut_price(rod_length, prices):

2 best_so_far = prices[rod_length]

3 for first_cut in 1, 2, ..., rod_length-1:

4 total_price = prices[first_cut] + best_cut_price(rod_length - first_cut)

5 if total_price > best_so_far:

6 best_so_far = total_price

7 return best_so_far

(TPS: what does the recursion tree look like? What’s the running time?)

It at least recurses on n− 1 and n− 2 each time, so it takes at least
√
2
n
time.

Memoization

But, many of those recursive calls are duplicates! So if we memoize, we’ll save time. It’s fine to just write it
like this:

1 @MEMOIZE

2 def best_cut_price(rod_length, prices):

3 best_so_far = prices[rod_length]

4 for first_cut in 1, 2, ..., rod_length-1:

5 total_price = prices[first_cut] + best_cut_price(rod_length - first_cut)

6 if total_price > best_so_far:

7 best_so_far = total_price

8 return best_so_far
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Or if you want to be super explicit:

1 memo = {}

2 def best_cut_price(rod_length, prices):

3 if (rod_length, prices) in memo: return memo[(rod_length, prices)]

4 best_so_far = prices[rod_length]

5 for first_cut in 1, 2, ..., rod_length-1:

6 total_price = prices[first_cut] + best_cut_price(rod_length - first_cut)

7 if total_price > best_so_far:

8 best_so_far = total_price

9 memo[(rod_length, prices)] = best_so_far

10 return best_so_far

(TPS: what is the memoized running time?)

Well, each recursive call recurses on a strictly smaller problem, so we just need to ask how many unique
inputs are encountered; the duplicates will be memoized when we we need them. The prices dictionary never
changes, so it’s just the rod lengths, which can be 1, 2, . . . , n. So there are n unique calls, each one doing
O(n) work, for a total of O(n2).

Bottom-Up

It’s good practice to try and translate this into a bottom-up solution, but it won’t change the running time.

4.6.2 DP: Common Subsequence

A string q is a subsequence of a string s if q can be formed by dropping characters from s. For example, abc
is a subsequence of faaaeoebhuac.

Many different strings can share a subsequence, e.g., abc is a subsequence of both fabec and alphabetic.

Problem 5. Given strings s and t, find the longest string q such that q is a subsequence of both s and t
(this is called the longest common subsequence, or LCS).

A Recursive Solution

(Think on your own/TPS for a while.)

We make the following claims (saying ‘the’ LCS but there may be multiple):

1. If both s and t start with the same character, i.e., s1 = t1, then the LCS starts with s1 followed by the
LCS between s2... and t2....

2. Otherwise, the LCS is either the LCS of s2... and t, or the LCS of s and t2....

Both of these are nonobvious enough that you should really prove them. Here’s a proof for the first claim;
I suggest trying to prove the second as practice (it’s in CLRS if you get stuck!).

Proof. Suppose s1 = t1 and q is an LCS of both s and t. If q1 = s1, then we’re done. Otherwise, q consists
entirely of a subsequence between s2... and t2...; but then s1 ◦ q is a subsequence between s and t of strictly
larger length, so we have a contradiction and hence this case cannot happen.

(Insert example here, something like: s =′ axbxc′, t =′ ayybyycy′. They claim there’s an LCS shared
between s and t that does not start with s1 =′ a′, e.g., bc. But then you could prepend s1 =′ a′ onto this to
get abc which is a subsequence, longer than the so-called LCS!)

This observation leads to the following recursive program:
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1 def lcs(s, t):

2 if s == "" or t == "": return ""

3 if s[0] == t[0]: return s[0] + lcs(s[1:], t[1:])

4 a = lcs(s[1:], t)

5 b = lcs(s, t[1:])

6 return longest of a, b

Runtime pre-memoization

Suppose both s and t start off size n.
(TPS about the runtime pre-memoization.)
At each step you (in the worst case) recurse on two problems, each one smaller. This leads (not exactly,

but close enough) to a binary tree having depth n, hence ≈ 2n time. Not great!

Runtime post-memoization

Now imagine we memoize the code:

1 @MEMOIZE

2 def lcs(s, t):

3 if s == "" or t == "": return ""

4 if s[0] == t[0]: return s[0] + lcs(s[1:], t[1:])

5 a = lcs(s[1:], t)

6 b = lcs(s, t[1:])

7 return longest of a, b

We always recurse on a smaller input, so let’s ask how many unique inputs are possible. Well, each input
is some suffix of s and suffix of t. There are only O(n) suffices of a string of length n, so there are only
O(n2) possible unique inputs. Each such unique call does O(1) work other than recursing, for a total of
O(n2) time. Much better!

4.6.3 Greedy and DP: (fractional) knapsack

Suppose you break into a store selling expensive raw materials. There are n raw materials, numbered
1, 2, . . . , n. Each one has a weight wi indicating how many pounds of that material are in the store. Each
one also has a market price pi ≥ 0 indicating the market price per pound of that material.

You brought with you a ‘knapsack’ (bag) that can carry up to W pounds of materials; you want to grab
materials in a way that maximizes the total market price without going over your weight limit W .

Problem 6. How much of each material should you take?

Fractional Knapsack

First, let’s assume you brought with you a very powerful knife that can cut through bars of raw material.
This allows you to take fractions of each, i.e., you can take only one pound of material 1 even if there are
10 pounds in the store. This variant of the problem is called fractional knapsack.

Represent your knapsack as a function k, where k(i) is the number of pounds of material i you will to
take.

Greedy Algorithm

(Think)

• Initial solution: empty set

• How to extend? Take as much of the next-most-expensive material as you can fit.
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• Repeat until you fill up your bag.

In fact, this works! We need the following lemma:

Lemma 8. Suppose some (fractional) knapsack k can be extended to a knapsack having optimal price. Let
k′ be the knapsack after taking as much of the most expensive remaining material you can. Then, k′ can still
be extended to an optimal knapsack.

Proof. (We’ll assume for this proof that all the items have distinct prices; it’s good practice to rewrite the
proof to also work in the case where some items have the same price.)

Let m be the most expensive material and x the amount of it you can take before either running out or
filling your knapsack completely.

Let k∗ be the optimal knapsack extending k and ∆k = k∗ − k be the amount of each material added to
k to form k∗. First, note the optimal knapsack is always filled because prices are positive. Second, note if
(∆k)(m) ≥ x we’re done, because then k∗ is already an extension of k′.

Otherwise, suppose (∆k)(m) < x. Then, there must be some material j such that (∆k)(j) > 0, i.e., that
material was added to the knapsack to form k∗. But m was the most expensive material remaining, hence
pj < pm. In other words, we would make more money for the same weight by taking more of m rather than
(∆k)(j) of j, i.e., k∗ would not have been optimal.

(End here on whiteboard.)
A bit more algebraically, define k′∗ to be identical to k∗ except taking more of m instead of j, i.e., such

that k′∗(m) = k∗(m) + ϵ and k′∗(j) = k∗(j)− ϵ for some ϵ small enough that neither k′∗(j) goes negative nor
k′∗(m) goes above wm. Then, we see that the amount of money we get is∑

i

pik
′
∗(i) = pmk′∗(m) + pjk

′
∗(j) +

∑
i ̸∈{j,k}

pik
′
∗(i)

= pm(k∗(m) + ϵ) + pj(k∗(j)− ϵ) +
∑

i ̸∈{j,k}

pik∗(i)

= ϵ(pm − pj) +
∑
i

pik∗(i)

⪈
∑
i

pik∗(i),

i.e., the knapsack k′∗ is better than the knapsack k∗, a contradiction with the assumption k∗ was optimal.

0–1 Knapsack

Now, let’s consider a slightly different scenario: suppose you forgot your knife, so you cannot subdivide each
material: you either take all wi of it, or none of it.

The same greedy algorithm will not work (you’ll see why on the practice problem!). But we can still do
dynamic programming!

A Recursive Solution If you have no space, return empty sack. Otherwise, either take the first item or
don’t, and recurse on the remaining items with however much space you have left.

1 def no_knife_knapsack(n_materials, weights, prices, capacity):

2 if not weights: return 0

3

4 without = no_knife_knapsack(n_materials - 1, weights[1:], prices[1:], capacity)

5 if weights[0] > capacity: return without

6 with_ = weights[0] * prices[0]

7 with_ += no_knife_knapsack(n_materials - 1, weights[1:], prices[1:],

8 capacity - weights[0])

9 return largest of with_, without

This is a binary recursion tree that will give roughly 2n time complexity.
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Memoization But there are many repeated states and it always recurses on a smaller problem, so memoize!
Let n be the number of materials and c be the initial capacity. Then you have only O(nc) unique inputs.

4.6.4 Post-Lecture Ed Notes

During the lecture, there were two interesting suggestions for greedy algorithms for rod cutting and LCS.
For rod cutting, it was suggested to make the cut of highest price first, and then repeat on the rest of

the rod. This does not always produce the optimal cut, and the code above has an example of this.
For LCS, it was suggested to iterate through both arrays in lockstep, stop once you find a character in t

that you’ve already seen in s, then add this character to the LCS and continue. Surprisingly, this does not
always find the LCS! A small counterexample is: ”xbax” and ”ax”; the above algorithm will find the LCS
”x” but indeed it should be ”ax”.

The basic insight behind that greedy algorithm is correct: find the ”first” character that both share. But
the problem is the definition of ”first” here is ambiguous: first in s, or first in t? I think if you find the first
shared character in s, and the first shared character in t, and then try both suffixes and take the best one,
you should get a correct algorithm (but I haven’t thought through it, so take this with a grain of salt!). But
I don’t think you can get away with not checking both of those branches.

If you’re interested in other LCS algorithms, Wikipedia suggests: https://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=878178

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=878178
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=878178
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Name: Stanford ID Number:

4.6.5 Lecture 8/7 EC Question

Suppose you are in the 0–1 knapsack scenario, i.e., you forgot your knife and cannot subdivide the materials.
In lecture we said the greedy algorithm doesn’t necessarily work in this setting. Try running the greedy
knapsack algorithm on the following items, assuming an initial capacity of 2 pounds. Did it find the
optimal knapsack?

Material Weight wi Price pi

1 1.5 pounds $2.00 per pound
2 1 pound $1.90 per pound
3 1 pound $1.90 per pound
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4.7 Week 7 Problem Sheet

Read This First: These problems, especially for 8/5, are meant to go beyond the scope of this class; unless
you are already extremely confident in algorithm design I suggest you spend your time either doing problems
from online/the textbooks or from HW6 rather than start on these problems.

4.7.1 Lecture 8/5: Max-Flow, Min-Cut

Problem 60: Suppose the edge capacities are all nonnegative integers and let F be the weight of
the maximum flow. Prove in the Ford-Fulkerson algorithm that no matter what choice of path from s
to t you make in the residual graph, Ford-Fulkerson stops after at most F iterations and hence takes
O(F (n+m) log n) time.

(Better choices of path in the residual graph lead to much better running time; I’ll try to extend this
problem to work through those, but if you can’t wait, see the Erickson textbook!)

Problem 61: The max-linear programming (max-LP) problem takes as input a matrix A, vector b, and
another vector c. The goal is to find vector x such that Ax ≤ b. Furthermore, c · x should be maximal
among all vectors satisfying Ax ≤ b. A number of polynomial-time and “smoothed polynomial-time”
(we haven’t covered this yet) algorithms are known for LP solving, including the simplex algorithm,
Karmarkar’s algorithm, and the ellipsoid method.

Prove that you can reduce max-flow to max-LP in polynomial time. In other words, describe an
algorithm that turns an instance of the max-flow problem into a matrix A and vectors b, c such that
the maximum value of c · x is the weight of the max flow and from the maximal x you can extract the
max flow. (Assume you don’t know how to solve max-flow directly, i.e., don’t just run Edmonds-Karp.)

LPs are somewhat more flexible than max-flow. For example, show how to use an LP encoding to
solve a variant of max-flow where nodes are allowed to ‘burn’ at most 1 unit of supplies.

Hint: Hint(s) are available for this problem on Canvas.

Problem 62: (Parts of this problem, especially the proof of strong duality, are adapted from Prof.
Friedrich Eisenbrand’s linear optimization course notes.)

The max-flow/min-cut lemma/theorem is a special case of the much larger phenomenon of duality.
In fact, every max-LP problem has some dual min-LP problem. We call the max-LP problem “primal”
and the corresponding min-LP problem “dual.” Specifically, if the primal problem is to maximize c · x
subject to Ax ≤ b, then the dual problem involves minimizing b · y subject to Aty ≥ c. Weak duality
says the optimal value for the primal problem is at most the optimal value for the dual; strong duality
says they are equal.

1. Prove weak duality : if Ax ≤ b and Aty ≤ c, then (c · x) ≤ (b · y).

2. Prove or assume the following fact, paraphrased from Prof. Eisenbrand’s lecture notes: Given any
compact set X ⊆ Rn and continuous function f : X → R, there exist points x1, x2 ∈ X with f(x1)
maximal on X and f(x2) minimal on X. (Requires some real analysis.)

3. Prove or assume the following fact, paraphrased from Prof. Eisenbrand’s lecture notes: Given any
closed and convex K ⊆ Rn and a point x0 ∈ Rn \ K, there exists some α, β such that αtx > β
for all x ∈ K and αtx0 < β. (In other words, you can always find a hyperplane separating the
point x0 from any closed, convex set that it does not belong to.) (Requires some linear algebra
and geometry.)

4. Prove or assume the harder part of Farkas’s lemma from Prof. Eisenbrand’s lecture notes: for any
real-valued matrix A and vector b, if there is no solution x ≥ 0 to Ax = b, then there exists some
λ such that λtA ≥ 0 and λtb < 0.
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5. Prove or assume the harder part of what Prof. Eisenbrand calls the “second variant of Farkas’s
lemma:” if Ax ≤ b has no solution then there exists λ ≥ 0 such that λtA = 0 and λtb < 0.

6. Prove the other direction of the second variant of Farkas’s lemma: if there exists λ ≥ 0 with
λtA = 0 and λtb < 0, then Ax ≤ b has no solution.

7. Finally, prove the main part of strong duality: let x0 be a solution maximizing c · x subject to
Ax ≤ b, and y0 a solution minimizing bt · y subject to Aty ≥ c. Prove c · x0 = bt · y0.

(Pre-hint: there are a few major tricks used. First, if you have two constraints Ax ≤ b and A′x ≤ b′,
you can represent both constraints by a single matrix equation (A/A′)x ≤ (b/b′) where A/A′ means stack
A ond top of A′. Second, if you have constraints Ax ≤ b and A′x′ ≤ b′ on two sets of variables, you can
represent both by the single equation (A|A′)(x/x′) ≤ (b|b′), where (A|A′) means stacking A to the left of
A′. Third, Ax ≤ b has a solution if and only if Ax−Ay+ z = b has a solution with x, y, z ≥ 0. Finally,
if x0 is the optimal value of a max-LP defined by A, b, c, then, for every ϵ > 0, there is no solution to
the constraints Ax ≤ b and ctx ≥ ctx0 + ϵ.)

Hint: Hint(s) are available for this problem on Canvas.

Problem 63: In lecture, we saw that the weight of the max flow was always at most the weight of
any min cut. In part (1) you encoded max-flow as an LP. In part (2) you saw the value of the max LP
solution is always at most the value of any solution to its dual. Connect these two results, by interpreting
the dual of the LP in part (1) as an encoding of the min-cut problem. (This problem is open-ended.
You might not be able to perfectly interpret it in this way; try to make as direct a connection as you
can. I highly suggest working with a concrete example.)

Problem 64: Continue doing practice problems from the web and the textbooks. Erickson has a whole
chapter on applications of max-flow.

Lecture 8/7: More Example Problems

Problem 65: Suppose you have a set of n variables x1, . . . , xn and m constraints, each constraint being
of the form xi − xj ≤ c for two variables xi, xj and constant c.

1. Describe how to encode the constraints as a graph such that, if the graph has a negative-weight
cycle, then the constraints are definitely unsatisfiable, i.e., there is no assignment to the variables
making all constraints true.

2. Now, prove if there are no negative-weight cycles in the graph, then there is a satisfying assignment
to the constraints.

3. Explain how to modify an algorithm we’ve seen to determine if the constraints are satisfiable.

4. If the constraints are satisfiable, explain how to use an algorithm we’ve seen to find a satisfying
assignment.

5. Explain how to also support constraints of the form xi ≥ c and xi ≤ c.

Hint: Hint(s) are available for this problem on Canvas.

Problem 66: Continue doing practice problems from the web and the textbooks.



4.8. LECTURE 8/12: OTHER FAMOUS ALGORITHMS 151

4.8 Lecture 8/12: Other Famous Algorithms

4.8.1 “Service Algorithms”

There are an important class of algorithms that are mostly used to reduce other problems to; i.e., it doesn’t
sound like a very interesting problem to solve, but it turns out you can solve lots of other problems using it
as a tool.

Linear Programming

One of the most immediate is linear programming (LP):

Problem 7. Given a matrix A and two vectors b and c, find a vector x such that Ax ≤ b and x · c is as
large as possible.

It turns out this is a very useful problem to be able to solve. For example, you can use LP algorithms to
solve max-flow! Consider the following graph:

A B C
2 4

2

You can represent a flow in this graph as a vector x = [x1, x2, x3], where x1 is the flow A → B, x2 is the
flow B → C, and x3 is the flow A → C. We know the flow has to be positive, hence x1 ≥ 0, x2 ≥ 0, and
x3 ≥ 0. We also know the incoming and outgoing flows of everything other than A,C have to be zero, i.e.,
x1 − x2 = 0. We can write all of these constraints in the following matrix inequality:

−1 0 0
0 −1 0
0 0 −1
1 −1 0
−1 1 0

x ≤


0
0
0
0
0

 .

Any solution to that inequality gives us a flow, and we specifically want the max flow, i.e., the one maximizing
x1 + x3, which we can represent as [1, 0, 1] · [x1, x2, x3].

So applying an LP solver to that input will find the max flow for us.
The nice thing about LP solvers is that they’re even more general than max-flow: we could, for example,

ask an LP solver to give us the maximum flow where the flow from A → B is exactly twice the flow from
B → C!

LP Solving Algorithms and Smoothed Analysis

There are a few major LP solving algorithms:

1. The simplex method: exponential time worst case, but polynomial time smoothed analysis (see below).

2. Ellipsoid method: polynomial time worst case, but worse than simplex in practice.

3. Interior points method: polynomial time worst case, competitive-ish with simplex in practice. (Patent-
encumbered when first developed as Karmarkar’s algorithm.)

The most interesting observation is that the “best in practice algorithm” (simplex) actually has quite
bad worst-case behavior. To understand why it performs so well in practice, the smoothed analysis method
was developed. The motivation for smoothed analysis is somewhat similar to average-case analysis (it can
be slow on very unlikely inputs, as long as it’s fast for “common” inputs), except in this case we don’t really
know what a realistic distribution on inputs should be. Smoothed analysis of the simplex method says, no
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matter what input A, b, c you pick, most of the inputs around it are easy to solve. Symbolically, this looks
roughly like:

∀A, b, c,Eϵ[time to solve (A+ ϵA)x ≤ (b+ ϵb) maximizing (c+ ϵc) · x] = O(polynomial).

In other words, for every possible input, if you change the input values a tiny bit, it is very likely that
that new input is solved very fast. Many LP problems come with some natural noise anyways, since they’re
adapted from real-world measurements, so this is a fairly clean explanation for the performance of the simplex
method.

The max-flow/min-cut duality we saw last week is also generalized into the LP world; see HW7 for a
walkthrough of that.

Classes: CS 261 seems to cover LP well, but doesn’t seem to cover the simplex method.

MILP

Suppose you have an LP and want to restrict the possible values for some of your variables, e.g., say the
flow from A to B has to be either zero or one; a value like 0.5 isn’t allowed. The result is a Mixed-Integer
Linear Program, and in general solving them is NP-hard. There are a variety of techniques for solving these,
most notably the Branch-and-Bound and Branch-and-Cut techniques, which essentially try to massage an
LP solver’s output to meet the constraints of the problem.

Classes: MSE 111/211 seems relevant, EE364B seems to cover branch-and-bound.

Satisfiability and CDCL

If you’re not interested in finding the optimal solution, just finding any solution, then LP and MILP solvers
are part of a larger class of satisfiability algorithms. Satisfiability algorithms solve the following problem:

Problem 8. Given a logical formula P (x1, . . . , xn), find values for x1, . . . , xn that makes P (x1, . . . , xn)
true.

For example, given a sudoku board, you could make a logical formula that encodes “x1 is different from
everything else in the first row and first column, . . . ,” i.e., all the constraints of the sudoku board.

There are a lot of different algorithms for solving these sorts of problems, going by names like constraint
programming, answer set programming, SMT, and CDCL. In general, these algorithms take exponential
time on worst-case inputs but are extremely efficient on many real-world instances. If you have a problem
that seems to be of this form (“find a solution to these constraints”), you should try using one of them.

Classes: CS257 is a good choice.

4.8.2 “Translate-Then-Operate”

If you have a slow operation that you need to do many times, it can sometimes be easier to first transform the
input into a form where that operation becomes more efficient, do the operation as many times as needed,
and then transform it back.

A first example for this is taking the logarithm if you need to multiply numbers very frequently. Multi-
plying numbers can be inefficient on some hardware compared to adding them, and can also sometimes have
worse precision. So if you need to compute, say, a · b, a · c, and a · b · c, you could first compute the logarithms
of a, b, c and then compute a · b as elog(a)+log(b). Depending on the cost of computing logarithms, addition,
multiplication, and exponentiation, this can sometimes be more efficient and/or more precise.

A similar situation occurs when you need to multiply numbers in a finite field, i.e., compute ab modulo p
for some large prime p. Computing the remainder modulo p is very inefficient on most modern computers,
but if you first translate a and b into Montgomery form, it makes that operation much more efficient. You can
then translate back from Montgomery form to the ‘normal’ int form after you’ve done your multiplications.

Finally, translating sequences into the frequency domain using a Fourier transform can make computing
convolutions more efficient.
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4.8.3 Multiplying: Numbers, Matrices, and Polynomials

Lots of people are interested in multiplying things quickly. Those things could be matrices, really large
numbers, or really large polynomials.

There are a variety of algorithms for this; in the matrix space, Strassen’s algorithm is a divide-and-
conquer algorithm that requires only about O(n2.8) time (i.e., scalar multiplications) compared to the O(n3)
time of the näıve approach (traffic director). There are (asymptotically) even better algorithms known, and
determining the “matrix multiplication exponent” is a very big problem in complexity theory since matrix
multiplication is a bottleneck in a lot of other algorithms. Wikipedia says the current best is O(n2.371552).

On many computers nowadays multiplying two ints takes O(1) time. But this is possible because ints are
limited; on a 64-bit machine an int usually can store at most something like the value 264 before overflowing.
If you’re instead working with values on the order of 22

64

, say, then you need to start worrying about the
time it takes to multiply such numbers. The “grade school” algorithm for this takes O(n2) time, but there’s a
divide-and-conquer algorithm (Karatsuba multiplication) that shows you can actually do it in about O(n1.58)
time (according to Wikipedia). Faster algorithms are known, and this is also an area of active research. Many
of them use “Fast Fourier Transforms.”

Finally, if you have two polynomials with lots of terms, you might want to find the coefficients of the
product polynomial. This again has many faster-than-the-näıve-algorithm solutions, many also using fast
fourier transforms.

4.8.4 String Search

Given strings s and t, find out whether s occurs as a substring of t. The näıve algorithm for this takes
O(|s||t|) time, but you can do it in O(|s|+ |t|) time using an algorithm like Knuth-Morris-Pratt (KMP).

4.8.5 Stable Marriage

Wikipedia describes it like so:

Given n men and n women, where each person has ranked all members of the opposite sex in
order of preference, marry the men and women together such that there are no two people of
opposite sex who would both rather have each other than their current partners. When there are
no such pairs of people, the set of marriages is deemed stable.

There are some cute solutions to this problem, most notably one called Gale-Shapley.

4.8.6 Guaranteed Near-Optimality of Greedy-Like Algorithms

There are some cases where, even though the greedy algorithm does not necessarily find the optimal solution,
you can prove that it finds something close to the optimal solution. Things to search in this vein include
“greedy optimization of submodular functions” and “Markov-Chain Monte Carlo” (not exactly a greedy
algorithm, but similar).

4.8.7 Other Searching and Sorting

Many of the graph algorithms we saw can be sped up by using a Fibonacci heap instead of a ‘normal’ heap.
Fibonacci heaps let you do everything except for delete-root in O(1) amortized time; delete-root is still
O(log n). So they wouldn’t speed up heapsort, but they speed up things like Dijkstra’s algorithm in some
scenarios.

If you leave the realm of comparison-based data structures, and assume, e.g., that your values are integers
in some range, then you can do some sorting and searching operations more efficiently. In the sorting world,
algorithms like counting sort can sometimes give better time for sorting, and data structures like van Emde
Boas trees can do better than AVL trees, if the values in question come from a small range of integers.

Finally, when we studied graph algorithms we assumed you were given a single, static graph. But in real
life, these graphs change over time: roads get built, flights get added, and friendships get made. There’s a
large research area dealing with dynamic graph algorithms, which support those scenarios more efficiently.
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4.8.8 Post-Lecture Ed Notes

There was a question asking whether the decision tree for a sorting algorithm can ever have more than n!
leaves, and I think the answer is basically no. If you restrict the tree to just the nodes that can actually
be reached on some execution for some input permutation of {1, . . . , n}, I think I agree with the questioner
that you must have exactly n! leaves. (If you build the tree for more possible inputs, e.g., with repeats like
[1, 1, 3], then there may be more than n! leaves. But we didn’t do that, so I think saying exactly n! leaves
is correct.) In any case, all we needed for the proof was that there are at least n! leaves, but still great to
think through these things !



4.9. LECTURE 8/14: REVIEW DAY 155

4.9 Lecture 8/14: Review Day

4.9.1 Announcements

1. Cheat sheet for the final: one 8.5x11 inch page, both sides, handwritten.

2. Exam starts at 8:30 AM on Saturday for in-person students. Lasts 3 hours.

3. SCPD students have until 8:30 AM Sunday to start the test.

4. Policy for the final exam: must show up within 30 minutes of the start time (i.e., by 9 AM).

4.9.2 Algorithm Analysis Matrix

Might help if we do it in this order:

• If your algorithm makes internal decisions (such as the pivot, or hash function, etc.), how are those
decisions made?

– The best possible decision?

– The worst possible decision?

– A randomly chosen decision? (In this class, we’re calling an “expected time” analysis.)

• If your algorithm takes an input, which input are you computing the running time for?

– The best possible input?

– The worst possible input?

– A randomly chosen input? (In this class, we’re calling an “average case” analysis.)

• If your algorithm can support multiple operations in a row, are you interested in:

– The time for a single operation in isolation?

– The time for a sequence of operations? (“Amortized analysis.”)

• If your algorithm makes internal decisions (pivot, hash function, etc.) is the input:

– Fixed ahead of time? (We’ve been calling this “black-box analysis.”)

– Change in reaction to those internal decisions? (We’ve been calling this “white-box analysis.”
There are different levels of information you might allow the user to get about the internal de-
cisions, e.g., do they know the hash function entirely? Or just what items got inserted to which
bucket?)

This is a pretty big matrix of options, but for the most part, it’s just saying that the analysis question
you need to answer depends on the scenario you’re analyzing. The terms above are just words that help us
quickly refer to certain types of scenarios, but, e.g., on the exams, I think we’ve been pretty consistent about
usually describing the exact scenario when it’s relevant.

4.9.3 First Quiz Topics

Big-O

(From the 6/26 lecture:)

Definition 23. For any natural-valued function f(n) we can define the set of functions O(f(n)) like so:

O(f(n)) = {f0(n) | ∃Cf0 , Nf0 ,∀n ≥ Nf0 , 0 ≤ f0(n) ≤ Cf0f(n)}.

And this convention:
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Convention 2. When we have an equation with asymptotic notation on either (or both) sides of the equals
sign, we mean the following: if every asymptotic set on the left hand side is replaced by any of its members,
then there exists a member of each asymptotic set on the right-hand side that can replace it and make the
equation true.

Hence, for example,
O(f(n)) +O(g(n)) + h(n) = O(k(n))

means, for any choice of f0(n) ∈ O(f(n)) and for any choice of g0(n) ∈ O(g(n)) there exists a choice of
k0(n) ∈ k(n) such that

f0(n) + g0(n) + h(n) = k0(n).

Let’s work through Homework 1.1.1. It asks to prove carefully that O(f(n))+O(g(n)) = O(f(n)+g(n)).

Proof. By the convention in class, we must show that for any f0(n) ∈ O(f(n)) and g0(n) ∈ O(g(n)), there
exists some k0(n) ∈ O(f(n)+g(n)) such that f0(n)+g0(n) = k0(n). In particular, take k0(n) := f0(n)+g0(n),
i.e., it suffices to show f0(n) + g0(n) ∈ O(f(n) + g(n)).

By definition of big-O, there exist Cf , Cg, Nf , Ng such that 0 ≤ f0(n) ≤ Cff(n) for n > Nf and
0 ≤ g0(n) ≤ Cgg(n) for n > Ng. Now let Nf+g = max(Nf , Ng) and Cf+g = max(Cf , Cg). Adding the two
earlier inequalities gives us

0 ≤ f0(n) + g0(n) ≤ Cff(n) + Cgg(n) ≤ Cf+gf(n) + Cf+gg(n) ≤ Cf+g(f(n) + g(n))

for all n > Nf+g, hence f0(n) + g0(n) ∈ O(f(n) + g(n)) as desired.

Sorting algorithms

• Selection sort: simple, but Θ(n2) best and worst case.

• Insertion sort: much better best case (Θ(n)) but worst case and average case both still bad (Θ(n2)).

• Merge sort: good best- and worst-case (Θ(n log n)) but is requires O(n) extra space.

• Quick sort: good expected time on all inputs (Θ(n log n)) but if you get really unlucky with pivot
choices it can be as bad as Θ(n2); also still O(log n) space usage.

• Heap sort: only O(1) extra space, and guarantees worst-case Θ(n log n), fully deterministic! But not
quite as efficient in practice (bad cache behavior and doesn’t really take advantage of any existing
sortedness in the array).

Maybe useful to look at insertion sort best and worst case.

Sorting lower bound

At the end of the sorting section, we proved that every comparison-based sorting algorithm takes at least
Ω(n log n) time. A “comparison-based sorting algorithm” is one that only interacts with its input by com-
paring two elements in the input array or moving them around. It can’t, for example, add them.

The proof of the comparison-based sorting lower bound went like so:

1. For any input size n, we can turn any comparison-based sorting algorithm into a decision tree, where the
interior nodes represent the comparisons made by the algorithm, the leaves represent the permutation
of the input array that puts it in sorted order (i.e., the return value of the sorting algorithm), and
edges represent what the algorithm does next depending on the outcome of a comparison.

In particular, each input value corresponds to a single branch in the tree (from root to leaf), corre-
sponding to the sequence of comparisons the algorithm makes on that input.

This decision tree captures all the possible things the algorithm could do on all the possible inputs of
size n.

(Decision trees are hard to draw by hand because they’re so large, but we posted a Python script that
can draw them for you!)
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2. Because the sorting algorithm can have n! many different outputs, i.e., permutations that put it back
in sorted order, there must be at least n! many leaves in the tree.

3. But you can prove for any binary tree, if there are at least k nodes, then the depth must be at least
Ω(log k).

4. Hence, there must be a branch in the tree of length at least Ω(log n!).

5. But each branch corresponds to the sequence of comparisons made when running the algorithm on
some input, hence there must be some input that causes the algorithm to make at least Ω(log n!)
comparisons.

6. Each comparison takes at least Ω(1) time, hence the algorithm must take at least Ω(log n!) = Ω(n log n)
time on at least one input of size n.

Decision trees vs. Recursion Trees The decision trees described are very different from recursion trees.
In a recursion tree, each node represents one recursive call to the function. In a decision tree, each (interior)
node represents a comparison performed by the function.

4.9.4 Second Quiz Topics

In this section we started to look at data structures that could store sets of items.

Searching Algorithms

• BSTs: good average case time for inserting n items in random order, but bad worst-case time.

• AVL: O(log n) worst-case everything, but deletion was not easy (we didn’t learn it) and needs at least
two extra bits per node to store balance factor.

• 2–3 trees: O(log n) worst-case everything; if represented as a red-black tree needs only one bit extra
per node. Can be extended to B-trees, which are most performant in practice. Deletion was slightly
easier.

• Splay trees: O(log n) amortized. Very easy to implement many operations (split, join, delete, insert,
. . . ). Performs even better if some nodes are more popular than others (but we didn’t analyze this
case closely).

• Hash maps: We saw both linear probing and separate chaining. We’ll talk about time analysis later;
the main thing to note is that if you choose the sequence of operations (what to insert/lookup) without
knowing anything at all about the hash function, and then you pick the hash function at random, the
expected amortized time per operation is O(1).

• Union-find: O(α(n)) amortized (we didn’t talk much about what α(n) is, except that it’s very close
to 1). Relied on path compression and join-by-weight.

The first four are essentially comparison-based. Hash maps don’t require comparisons, but they do
require a hash function. Hash maps are generally faster (at least in terms of expected time), but they are
somewhat less flexible (e.g., can’t easily find “largest thing in the set less than x”). Union-find solves a
different problem than the others; it keeps track of many different sets of items under the operations ‘union’
and ‘same-set.’
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Hash table collisions

(We didn’t talk much in lecture about linear probing, so going to only talk about separate chaining here.
Also going to assume a load factor ≤ 1.)

In retrospect, I think it’s useful to separate out exactly what expected values we computed vs. in what
scenarios they become useful. Let’s say an “operation” is either an insertion or search for a specific value
(deletions can be handled too, but we didn’t spend too much time talking about that). Then, in lecture we
saw the following:

• If you decide on a sequence of n operations, then pick a hash function at random, and then run the
operations: the expected number of items in any given bucket is O(1).

• If you decide on a sequence of n operations, then pick the hash function at random, and then run the
operations: the expected number of items in the most-filled bucket is not O(1).

• If you pick the hash function and then decide on the sequence of n operations knowing that hash
function, then it’s possible for the person who picks the sequence to ensure that some bucket has Θ(n)
items in it.

Now, based on those facts, you can analyze a lot of different scenarios.
The main thing to consider is whether the input is determined independent of the choice of hash function,

or whether it can depend on the choice of hash function. We’ve been calling the first case “black-box” and
the second case “white-box” (though maybe we should think of it as a spectrum of “gray-box” scenarios
depending on how much information about the hash function the user gets).

As a running example, let’s consider a spellcheck program that takes a dictionary of n words, inserts
them all into a hash table, and then checks each word in the user’s n-word input to make sure it’s in the
dictionary.

• If the user has to provide their input before the program runs, e.g., they run the program like
spellcheck.exe dictionary.txt my book.txt, then the randomly chosen hash function will map
every distinct word to each bucket with equal probability, and so each operation will take expected
(amortized) time O(1), for a total expected time of O(n+ n) = O(n).

• Suppose, however, the program is more interactive: after loading the dictionary, it stays open and lets
the user specify words one-by-one. Also assume the user can reliably time how long each dictionary
search takes. Then they could do the following:

1. First, search for each one of the n dictionary words and find the word x that takes the longest to
search for: this must be the one at the end of the longest chain.

2. In particular, the expected lookup time for x will not be O(1).

3. Then, do n repeated searches for x.

4. Notably, those n repeated searches will be worse than O(n), so the total time for these 3n oper-
ations is not O(n). (But it is still pretty good, but we haven’t done enough analysis to give an
upper bound on this.)

• Alternatively, suppose the program provides a debug mode: you can ask it to print out all the buckets
before specifying what words you want to search for in the dictionary. Then the user could do the
following:

1. Find the item x at the end of the longest chain.

2. Perform n repeated searches for x.

3. Notably, those n repeated searches will each be worse than O(1), so the total time for these 2n
operations is not O(n). (But it is still pretty good, but we haven’t done enough analysis to give
an upper bound on this.)
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• Finally, suppose the user modifies the program’s source code so it doesn’t use a random hash function,
but rather always uses some fixed hash function h(x). Also suppose the user controls the dictionary.
Then the user could do the following:

1. Make up fake words for the dictionary so that they all have the same hash value.

2. Now there’s a chain of size n; search for the last word in that chain n times.

3. This takes O(n2) time!

Amortized Analysis

Many data structures have the following property: some individual operations can be slow, but any sequence
of many operations is still fast.

This led to the following definition:

Definition 24. An algorithm has worst-case running time O(A(n)) amortized over n operations if every
sequence of n operations takes time O(nA(n)).

(We may sometimes drop the “amortized over” statement and just say something like, it has amortized
time O(A(n)). We generally assume the sequence of n operations starts with an empty initial state.)

The best example of this was inserting into a growing array, where whenever the array fills up we make
it twice as large as it needs to be.

Most of the insertions have free space and hence take just O(1) time to add the item at the end. But
every now and then, an insertion will fill up the array, triggering a slow, O(n)-time resize. But these resizes
get less and less frequent the more you insert, and in fact, we showed in that lecture that any sequence of n
insertions takes at most O(n) time total, i.e., O(1) amortized time per insertion.

We saw two different ways to go about proving the O(n) time total. The first was to directly reason
about a sequence of n insertions and how long it would take. The second was the potential method, where
we defined a potential function and proved two key facts about it:

1. The potential of any state in the sequence is never less than that of the initial potential.

2. For any operation in the sequence, the time it takes plus the change in potential is always at most
Cf(n), where C is a constant and f(n) is the amortized time bound we’re trying to prove (1 in this
case).

As long as those two conditions were met, we saw that implies any sequence of n operations takes O(nf(n))
time and so the amortized time per operation is O(f(n)).

4.9.5 Graphs Section Topics

Min-Cut Part of Max-Flow/Min-Cut

Let’s revisit the scenario of the US trying to disrupt USSR supply routes, and this time let’s suppose their
goal is the following: blow up the smallest number of supply routes such that no goods can get from s to t.

What they should do is the following:

1. Label all supply lines with a capacity of 1 and use Ford-Fulkerson to find a minimal s–t cut C. (To do
this, find the max-flow and then take C to be everything reachable from s in the final residual graph
— we proved in lecture this was a min cut.)

2. Then, blow up every edge exiting the cut C.

Because C is an s–t cut, to get any goods from s to t they would have to at some point exit the cut C, hence
blowing up all the exiting edges totally stops goods from flowing from s to t.

Because the cut is minimal, this blows up the fewest number of edges possible to achieve that goal. Here’s
a slightly more rigorous proof of that fact:
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Proof. Let C be a min s–t cut and E be the set of exiting edges from C. Suppose for sake of contradiction
that there is some other set of edges E′ where (i) |E′| < |E| and (ii) after removing the edges in E′ there is
no remaining path from s to t. Then, consider the cut

C ′ = {n | n is reachable from s after removing edges in E′}.

This is an s–t cut by assumptions on E′, and in particular, every exiting edge of C ′ must be in E′ (if there
were an exiting edge a → b not in E′, then b would be reachable from s and hence b ∈ C ′ and hence a → b
would not be an exiting edge — contradiction). But this implies |E′| is larger than the crossing capacity of
C ′. But then C ′ has lower crossing capacity than C, i.e., C was not a minimal cut. This is a contradiction
that completes the proof.

4.9.6 Post-Lecture Ed Notes

If you’re interested in KMP string matching, I think SW seems to do the best job explaining it. There’s also a
nice intuitive introduction here: https://gist.github.com/LeoRiether/c61b7f709b7826f47bc67f0c5d0d9b6b
but it’s incomplete

There were some interesting questions about alternative settings for stable marriage; folks with those
questions may find these related problems on Wikipedia interesting: https://en.wikipedia.org/wiki/

Stable_marriage_problem#Related_problems

Here’s more information about the real story behind the Simplex algorithm: https://www.lancaster.
ac.uk/stor-i-student-sites/ben-lowery/2022/03/linear-programming-and-the-birth-of-the-simplex-algorithm/

https://gist.github.com/LeoRiether/c61b7f709b7826f47bc67f0c5d0d9b6b
https://en.wikipedia.org/wiki/Stable_marriage_problem#Related_problems
https://en.wikipedia.org/wiki/Stable_marriage_problem#Related_problems
https://www.lancaster.ac.uk/stor-i-student-sites/ben-lowery/2022/03/linear-programming-and-the-birth-of-the-simplex-algorithm/
https://www.lancaster.ac.uk/stor-i-student-sites/ben-lowery/2022/03/linear-programming-and-the-birth-of-the-simplex-algorithm/
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4.10 Study Guide for Third Quiz (Graphs and Algorithm Design)

While we don’t expect any changes, this document is only a best-effort estimate of the topics. Everything
from lecture is in-scope.

Topics

The following topics are in-scope:

1. Know the graph terminology from lectures (like sparse, dense, directed, undirected, weighted, un-
weighted)

2. Know what the following algorithms do, how they work, how to apply them in different scenarios, and
how much time they take: explore (BFS and DFS), toposort, Dijkstra, Bellman-Ford, Floyd-Warshall
(don’t need to know how it works unless we cover it on Wednesday), Prim, Kruskal, activity selection,
Edmonds-Karp/Ford-Fulkerson (max-flow/min-cut; don’t need to know running time).

3. Be able to solve problems using dynamic programming, and analyze the running time of your solution.

4. Be able to solve problems using greedy algorithms, and analyze the running time of your solution.

Having done homework questions (especially the textbook or online ones) might be useful in answering quiz
questions, but we will write the quiz assuming you haven’t done the homework.
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Appendix A

Appendix: About the Logarithm

Originally, I expected we wouldn’t need any nontrivial limits or facts about the logarithm/exponential
function in this class. Over time, a few facts (especially the limit of

(
n−1
n

)n
and the asymptotics of the

harmonic sequence) kept coming up again and again. At the time, I gave students the limits as something
they were allowed to use without proof, but if I were to do it again, I would provide the following handout
to explain the logarithm and the exponential functions.

Please note that doing this rigorously requires a level of calculus/analysis that is beyond the prerequisites
for this course. In the below, I’ve tried to indicate where there are gaps, e.g., by using ≈ instead of writing
out a limit.

(Warning: this content has not been thoroughly checked, and is probably even more bug-ridden than the
rest of these notes!)

A.1 A Natural Definition of the Log

Three related objects appear with surprising frequency across mathematics and computer science. These
are the exponential function exp(x), the constant e, and the natural logarithm log(x). All of these can be
defined in terms of each other:

1. If you know the function exp(x), you can define e := exp(1) and log(x) := exp−1(x).

2. If you know what the value of the constant e is, you may define exp(x) := ex and log(x) := exp−1(x).

3. If you know the function log(x), you can define exp(x) := log−1(x) and e := exp(1).

To be parsimonious, we would like to pick one of these three to serve as the base definition for all others. I
know of no way to define exp(x) directly that does not require an understanding of limits and/or derivatives.
Unfortunately, at the undergraduate level, too few students have taken a course in differential calculus for
us to assume such knowledge in class. The second option is also not optimal, for two reasons: (1) even if
you know e, defining ex for nonrational x requires an understanding of limits, and (2) defining the value of e
itself is nontrivial.

For these reasons, we will take the third road: define log(x) directly, then take exp(x) to be its inverse
and e to be exp(1). This route allows us to trade differential calculus for integral calculus, i.e., trade talking
about rates of change for talking about areas. I personally find areas to be less intimidating, and essentially
let us do most of the calculus we need to do in a convincing (if not entirely rigorous) geometric way. It
also has the nice benefit of making the log(n) ≈ Hn connection immediately and visually intuitive. This is
particularly helpful in computer science where Hn appears with high frequency.

A.2 A Definition of log(x)

Without further ado . . .

163
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Definition 25. The natural logarithm log(x) is defined to be the area under the curve 1
x in the range [1, x].

(If x < 1, we take it to be −1 times the area in the range [x, 1]. The domain of the function is (0,∞).)

Hence, log(5) is defined to be the following area:
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And log(0.5) is defined to be −1 times the following area:
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A.3 Warmup: A Generalized Logarithm

In our definition of the logarithm, we rather arbitrarily decided to start at x = 1. What if we wanted the
area under the curve 1

x in some range [a, b]? We could define the range-logarithm like so:

Definition 26. The range-logarithm log[a, b] is the area under the curve 1
x from x = a to x = b.

In particular, with this notation, log(x) = log[1, x].
Surprisingly, if you can compute the normal logarithm and you can divide, it’s easy to compute the range

logarithm!

Theorem 32. For any positive numbers a ≤ b, we have log[a, b] = log(b/a).

To prove this theorem we’ll use some geometric manipulations and see what happens to the area. We’ll
need this pretty intuitive axiom about area:

Axiom 1. If some region has area A and you stretch it either vertically or horizontally by a stretch factor c,
then the resulting region has area cA.1

1This axiom can also be used to show that the logarithm is continuous!
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Now, let’s study the following three diagrams, with [a, b] = [2, 4].
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1. The first diagram shows log[a, b], i.e., the area under 1
x from x = a up to x = b.

2. The second diagram shows what happens when we scale the graph down horizontally by a factor of a,
i.e., the area under the curve 1

ax from x = a/a up to x = b/a. If we call this area A, Axiom 1 tells us
A = 1

a log[a, b].

3. The final diagrams shows what happens when we scale the graph up vertically by a factor of a, i.e., the
area under the curve a

ax from x = a/a up to x = b/a. If we call this area B, Axiom 1 tells us B = aA.

(a) But, in fact, a
ax = 1

x and a/a = 1, so B = log(b/a)!

(b) Furthermore, B = aA = a 1
a log[a, b], so log(b/a) = B = log[a, b], exactly as claimed.

A.4 A Fundamental Property of the Logarithm

Now let’s look at one of the most exciting and useful properties of the logarithm: it turns multiplication into
addition! More precisely, we’ll prove:

Theorem 33. For any real numbers a and b, we have log(ab) = log(a) + log(b).

Let’s draw the scenario with a = 2 and b = 3:
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This drawing makes clear how we can split up log(ab) in terms of log[1, a] and log[a, ab]; in particular,

log(ab) = log[1, a] + log[a, ab] = log(a) + log(ab/a) = log(a) + log(b),

where the second equality follows from the warmup lemma we just proved!
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A.4.1 Corollaries of this Fundamental Property

In fact, we can now see the following corollaries:

1. 0 = log(1) = log(b · 1/b) = log(b) + log(1/b), hence log(1/b) = − log(b).

2. log(a/b) = log(a · 1
b ) = log(a) + log(1/b) = log(a)− log(b).

3. log(ak) = log(aa · · · a) = log(a) + log(a) + · · · + log(a) = k log(a) for integers k. (Exercise for reader:
explain why this fact, along with log(ab) = log(a)+log(b), together imply log(ak) = k log(a) holds for all
rational k. Then use the fact that area scales continuously with stretching to prove log(ax) = x log(a)
for all real x.)

4. If x < y, then the area from 1 to y strictly contains the area from 1 to x. Hence log is strictly increasing.

5. log is a bijection between (0,∞) and R: it is injective because it is strictly increasing, and since
log(2x) = x log 2 for all x it is also surjective (onto).

A.5 The Harmonics

The following sequence shows up frequently in computer science: Hn =
∑n

i=1
1
i . Surprisingly, it’s possible

to prove Hn = Θ(log n)! The reason is that
∑n

i=1
1
i is essentially a good, discrete approximation of the area

under 1
x . In particular, Hn is an overapproximation of log n; the following diagram shows the five terms of

H5 = 1
1 + 1

2 + 1
3 + 1

4 + 1
5 shown as rectangles with the corresponding area drawn on top of the area defining

log 5.
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From this diagram, we know immediately that Hn is larger than log n. But just how much larger is it?
It turns out: not more than 1 larger! To see why, make the same plot with two changes: drop the first box
(i.e., plot Hn − 1) and shift every rectangle over by one spot.
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This then shows that Hn − 1 is smaller than log n; together we’ve shown

Hn − 1 ≤ log n ≤ Hn,

which one can show implies Hn = Θ(log n).
(1 here is clearly an overapproximation of Hn − log n; the true value — in the limit, at least — is

something called Euler’s constant. Trying to better approximate this is a fun exercise — you might start by
lower bounding the size of the white region in each box in the overapproximation diagram.)

A.6 Approximating log x

In the previous section, we saw that Hn could be interpreted as an approximation of log n using rectangles
of width 1. We can make a similar approximation with any width w; in particular the analogous bounds are∑

i=1+w,1+2w,...,1+kw

w

i
≤ log x ≤

∑
i=1,1+w,1+2w,...,1+kw

w

i
,

where k is the largest integer with 1 + kw ≤ x. This produces an approximation with error bounded by w,
hence it allows you to compute log x to any desired precision.

A.7 What About exp(x)?

Recall that we showed the logarithm was a bijection: that means we can define its inverse, which we’ll call
the exponential function.

Definition 27. exp(x) is the inverse of the logarithm, i.e., log(exp(x)) = exp(log(x)) = x.

Let’s investigate some properties of the exponential. Remember that logarithms turned multiplication
into addition; exponents will do the opposite!

Theorem 34. exp(a) exp(b) = exp(a+ b) and exp(a/b) = exp(a− b).

Proof. The logarithm is a bijection, so it suffices to show log(exp(a) exp(b)) = log(exp(a+ b)). Indeed, this
holds iff log(exp(a)) + log(exp(b)) = log(exp(a + b)), which holds iff a + b = a + b, which is true. Similar
algebra expresses truthity of the other claim.

In particular, then, we can characterize exp(n) as repeated multiplication:

Theorem 35. If n is a natural number, then exp(n) = exp(1)n and exp(−n) = exp(1)−n.

Proof. Write exp(n) = exp(1 + 1 + · · ·+ 1) and apply previous theorem n times. Similar for exp(−n).

In fact, this establishes that exp(r) = exp(1)r for any rational number r. The logarithm is continuous,
so the exponent is as well, so we can see the exponential function is exactly exp(x) = exp(1)x for all real
numbers x.
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A.8 What About e?

The last theorem indicates there may be something special about exp(1), and indeed we give it a special
name: e := exp(1). Phrased in terms of logarithms, e is the unique number such that log(e) = 1. Since
log x is increasing, you can use the strategy in “Approximating log x” above to compute e to any desired
precision. When you do this, you’ll find that the value of e is approximately 2.7.

A.9 Some Interesting Limits

The following limit shows up frequently:

Theorem 36. For very large n, the quantity
(
n−1
n

)n
approaches exp(−1) = e−1.

Proof. Applying logs to both sides, it suffices to show n log((n−1)/n) approaches −1. But n log((n−1)/n) =
n(log(n−1)− log(n)), hence this is asking us to determine the difference between log(n) and log(n−1). The
magnitude of that difference is exactly log[n− 1, n], i.e., the area under the curve 1/x in the range [n− 1, n].
We can underapproximate it using a rectangle of length 1 and height 1/n, so the magnitude is at least 1/n.
We can overapproximate it using a rectangle of length 1 and height 1/(n− 1), so the magnitude is at most
1/(n− 1). In total then, we have

−n/(n− 1) ≤ n log((n− 1)/n) ≤ −n/n,

i.e.,

n log((n− 1)/n) ≈ −1

for very large n, as desired.

In fact, an analogous proof establishes the same fact for
(
n+1
n

)n
; it approaches e.

Corollary 1. For very large n and arbitrary constant c, the quantity
(
n−c
n

)n
approaches exp(−c) = e−c.

Proof. (Thanks Anjiang!) Define x = n/c, then the above is
((

x−1
x

)x)c
. But by the prior theorem the

interior approaches e−1, hence the quantity approaches e−c as desired.

A.10 Change of Base and log2

It’s also very common in computer science to work with the binary logarithm, log2, defined as the inverse
of 2x. In other words, 2log2 x = x. When working under a big-O (or other asymptotic notation) we usually
treat log2 and log identically. That is because they are simply a constant multiple from each other! More
generally, define logb to be the logarithm base b, i.e., the unique function such that blogb x = x. Then we
have the following theorem:

Theorem 37. For any b and x,

logb x =
log x

log b

Proof. It suffices to prove blog x/ log b = x. In fact,

blog x/ log b = (elog b)log x/ log b = elog b(log x/ log b) = elog x = x.
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A.11 Taylor’s Version

It’s popular to use the following equality: exp(x) =
∑∞

i=0
xi

i! . Wikipedia, citing Rudin, makes the following
argument for this fact. Recall we know, for large n,

exp(x) ≈
(
n+ x

n

)n

.

Applying the binomial theorem to the right-hand side, we see (for large n)

exp(x) ≈
n∑

i=0

(
n

i

)
xi

ni

=

n∑
i=0

n(n− 1) · · · (n− (i− 1))xi

i!ni

=

n∑
i=0

xi

i!

(
n− 1

n

n− 2

n
· · · n− (i− 1)

n

)

As n gets large, the coefficient n−1
n

n−2
n · · · n−(i−1)

n on the ith term approaches one, hence

exp(x) ≈
∞∑
i=0

xi

i!

as desired. (This last step is a bit too handwavey; refer to Wikipedia/Rudin for a more rigorous analysis if
you’re interested.)
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